归并排序
递归方法实现
public class Code01_MergeSort {
// 递归方法实现
public static void mergeSort1(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
process(arr, 0, arr.length - 1);
}
// 请把arr[L..R]排有序
// l...r N
// T(N) = 2 * T(N / 2) + O(N)
// O(N * logN)
public static void process(int[] arr, int L, int R) {
if (L == R) { // base case
return;
}
int mid = L + ((R - L) >> 1);
process(arr, L, mid);
process(arr, mid + 1, R);
merge(arr, L, mid, R);
}
public static void merge(int[] arr, int L, int M, int R) {
int[] help = new int[R - L + 1];
int i = 0;
int p1 = L;
int p2 = M + 1;
while (p1 <= M && p2 <= R) {
help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
}
// 要么p1越界了,要么p2越界了
while (p1 <= M) {
help[i++] = arr[p1++];
}
while (p2 <= R) {
help[i++] = arr[p2++];
}
for (i = 0; i < help.length; i++) {
arr[L + i] = help[i];
}
}
}
非递归方法实现
public static void mergeSort2(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
int N = arr.length;
// 步长
int mergeSize = 1;
while (mergeSize < N) { // log N
// 当前左组的,第一个位置
int L = 0;
while (L < N) {
if (mergeSize >= N - L) {
break;
}
int M = L + mergeSize - 1;
int R = M + Math.min(mergeSize, N - M - 1);
merge(arr, L, M, R);
L = R + 1;
}
// 防止溢出
if (mergeSize > N / 2) {
break;
}
mergeSize <<= 1;
}
}
求数组的小和
在一个数组中,一个数数左边比它小的数的总和,叫数的小和,所有数的小和累加起来,叫数组的小和
(一个数右边有多少个数比他 大)
public class Code02_SmallSum {
public static int smallSum(int[] arr) {
if (arr == null || arr.length < 2) {
return 0;
}
return process(arr, 0, arr.length - 1);
}
// arr[L..R]既要排好序,也要求小和返回
// 所有merge时,产生的小和,累加
// 左 排序 merge
// 右 排序 merge
// merge
public static int process(int[] arr, int l, int r) {
if (l == r) {
return 0;
}
// l < r
int mid = l + ((r - l) >> 1);
return
process(arr, l, mid)
+
process(arr, mid + 1, r)
+
merge(arr, l, mid, r);
}
public static int merge(int[] arr, int L, int m, int r) {
int[] help = new int[r - L + 1];
int i = 0;
int p1 = L;
int p2 = m + 1;
int res = 0;
while (p1 <= m && p2 <= r) {
res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while (p1 <= m) {
help[i++] = arr[p1++];
}
while (p2 <= r) {
help[i++] = arr[p2++];
}
for (i = 0; i < help.length; i++) {
arr[L + i] = help[i];
}
return res;
}
}
求数组的降序对个数
(一个数左边有多少个数比他 大)
public class Code03_ReversePair {
public static int reverPairNumber(int[] arr) {
if (arr == null || arr.length < 2) {
return 0;
}
return process(arr, 0, arr.length - 1);
}
// arr[L..R]既要排好序,也要求逆序对数量返回
// 所有merge时,产生的逆序对数量,累加,返回
// 左 排序 merge并产生逆序对数量
// 右 排序 merge并产生逆序对数量
public static int process(int[] arr, int l, int r) {
if (l == r) {
return 0;
}
// l < r
int mid = l + ((r - l) >> 1);
return process(arr, l, mid) + process(arr, mid + 1, r) + merge(arr, l, mid, r);
}
public static int merge(int[] arr, int L, int m, int r) {
int[] help = new int[r - L + 1];
int i = help.length - 1;
int p1 = m;
int p2 = r;
int res = 0;
while (p1 >= L && p2 > m) {
res += arr[p1] > arr[p2] ? (p2 - m) : 0;
help[i--] = arr[p1] > arr[p2] ? arr[p1--] : arr[p2--];
}
while (p1 >= L) {
help[i--] = arr[p1--];
}
while (p2 > m) {
help[i--] = arr[p2--];
}
for (i = 0; i < help.length; i++) {
arr[L + i] = help[i];
}
return res;
}
}
时间复杂度 N*logN
快排
荷兰国旗问题(Partition过程)
public class Code02_PartitionAndQuickSort {
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
// arr[L..R]上,以arr[R]位置的数做划分值
// <= X > X
// <= X X
public static int partition(int[] arr, int L, int R) {
if (L > R) {
return -1;
}
if (L == R) {
return L;
}
int lessEqual = L - 1;
int index = L;
while (index < R) {
if (arr[index] <= arr[R]) {
swap(arr, index, ++lessEqual);
}
index++;
}
swap(arr, ++lessEqual, R);
return lessEqual;
}
// arr[L...R] 玩荷兰国旗问题的划分,以arr[R]做划分值
// <arr[R] ==arr[R] > arr[R]
public static int[] netherlandsFlag(int[] arr, int L, int R) {
if (L > R) { // L...R L>R
return new int[] { -1, -1 };
}
if (L == R) {
return new int[] { L, R };
}
int less = L - 1; // < 区 右边界
int more = R; // > 区 左边界
int index = L;
while (index < more) { // 当前位置,不能和 >区的左边界撞上
if (arr[index] == arr[R]) {
index++;
} else if (arr[index] < arr[R]) {
// swap(arr, less + 1, index);
// less++;
// index++;
swap(arr, index++, ++less);
} else { // >
swap(arr, index, --more);
}
}
swap(arr, more, R); // <[R] =[R] >[R]
return new int[] { less + 1, more };
}
}
快排1.0
O(N^2)
<= 和> 两个区域
public static void quickSort1(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
process1(arr, 0, arr.length - 1);
}
public static void process1(int[] arr, int L, int R) {
if (L >= R) {
return;
}
// L..R partition arr[R] [ <=arr[R] arr[R] >arr[R] ]
int M = partition(arr, L, R);
process1(arr, L, M - 1);
process1(arr, M + 1, R);
}
快排2.0
O(N^2)
相比于1.0,< = > 三个区域
public static void quickSort2(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
process2(arr, 0, arr.length - 1);
}
// arr[L...R] 排有序,快排2.0方式
public static void process2(int[] arr, int L, int R) {
if (L >= R) {
return;
}
// [ equalArea[0] , equalArea[0]]
int[] equalArea = netherlandsFlag(arr, L, R);
process2(arr, L, equalArea[0] - 1);
process2(arr, equalArea[1] + 1, R);
}
快排3.0
O(NlogN)
相比于2.0,在数组中随机选择一个数,和arr[R]交换,开始2.0
public static void quickSort3(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
process3(arr, 0, arr.length - 1);
}
public static void process3(int[] arr, int L, int R) {
if (L >= R) {
return;
}
swap(arr, L + (int) (Math.random() * (R - L + 1)), R);
int[] equalArea = netherlandsFlag(arr, L, R);
process3(arr, L, equalArea[0] - 1);
process3(arr, equalArea[1] + 1, R);
}
堆
结构上:完全二叉树
大根堆
public class Code02_Heap {
public static class MyMaxHeap {
private int[] heap;
private final int limit;
private int heapSize;
public MyMaxHeap(int limit) {
heap = new int[limit];
this.limit = limit;
heapSize = 0;
}
public boolean isEmpty() {
return heapSize == 0;
}
public boolean isFull() {
return heapSize == limit;
}
public void push(int value) {
if (heapSize == limit) {
throw new RuntimeException("heap is full");
}
heap[heapSize] = value;
// value heapSize
heapInsert(heap, heapSize++);
}
// 用户此时,让你返回最大值,并且在大根堆中,把最大值删掉
// 剩下的数,依然保持大根堆组织
public int pop() {
int ans = heap[0];
swap(heap, 0, --heapSize);
heapify(heap, 0, heapSize);
return ans;
}
// 新加进来的数,现在停在了index位置,请依次往上移动,
// 移动到0位置,或者干不掉自己的父亲了,停!
private void heapInsert(int[] arr, int index) {
// [index] [index-1]/2
// index == 0
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
// 从index位置,往下看,不断的下沉
// 停:较大的孩子都不再比index位置的数大;已经没孩子了
private void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1;
while (left < heapSize) { // 如果有左孩子,有没有右孩子,可能有可能没有!
// 把较大孩子的下标,给largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
// index和较大孩子,要互换
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
private void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
}
堆排序
public class Code03_HeapSort {
// 堆排序额外空间复杂度O(1)
public static void heapSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
// O(N*logN)
// for (int i = 0; i < arr.length; i++) { // O(N)
// heapInsert(arr, i); // O(logN)
// }
// O(N)
for (int i = arr.length - 1; i >= 0; i--) {
heapify(arr, i, arr.length);
}
int heapSize = arr.length;
swap(arr, 0, --heapSize);
// O(N*logN)
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
// arr[index]刚来的数,往上
public static void heapInsert(int[] arr, int index) {
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
// arr[index]位置的数,能否往下移动
public static void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1; // 左孩子的下标
while (left < heapSize) { // 下方还有孩子的时候
// 两个孩子中,谁的值大,把下标给largest
// 1)只有左孩子,left -> largest
// 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
// 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
// 父和较大的孩子之间,谁的值大,把下标给largest
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
使用堆排序
已知一个几乎有序的数组。几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离一定不超过k,并且k相对于数组长度来说是比较小的(时间复杂度:N*logK)。
// 默认小根堆
PriorityQueue<Integer> heap = new PriorityQueue<>();
public class Code04_SortArrayDistanceLessK {
public static void sortedArrDistanceLessK(int[] arr, int k) {
if (k == 0) {
return;
}
// 默认小根堆
PriorityQueue<Integer> heap = new PriorityQueue<>();
int index = 0;
// 0...K-1
for (; index <= Math.min(arr.length - 1, k - 1); index++) {
heap.add(arr[index]);
}
int i = 0;
for (; index < arr.length; i++, index++) {
heap.add(arr[index]);
arr[i] = heap.poll();
}
while (!heap.isEmpty()) {
arr[i++] = heap.poll();
}
}
}