DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior CVPR 2023

GitHub - XPixelGroup/DiffBIR: Official codes of DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

目录

Abstract

Contribution

1. DiffBIR的设计

2. IRControlNet的提出

3. 可控模块的引入

总结

Method

Restoration Module

Generation Module

Preliminary: Stable Diffusion.

**IRControlNet-**条件编码 (Condition Encoding)

**IRControlNet-**条件网络 (Condition Network)

**IRControlNet-**特征调制 (Feature Modulation)

**IRControlNet-**优化目标

变体1(与ControlNet相同)

变体2(不使用 zt)

变体3(随机初始化条件网络)

变体4(控制中间块特征和解码器特征)

Restoration Guidance

1. 设计目标

2. 区域自适应恢复指导

3. 去噪过程

4. 区域自适应均方误差(MSE)损失函数

5. 权重映射和损失函数

6. 影响机制

7.优化过程

Experiment

1. 数据集

2. 实现细节

3. 评估指标

VS StableSR

Idea


Abstract

我们提出了DiffBIR,一个通用的恢复管道,可以处理不同的盲图像恢复任务,采用统一框架。DiffBIR将盲图像恢复问题分解为两个阶段:1)降级去除:去除与图像无关的内容;2)信息再生:生成缺失的图像内容。每个阶段都独立开发,但它们以级联的方式无缝协作。在第一阶段,我们使用恢复模块去除退化,获得高保真的恢复结果。在第二阶段,我们提出了IRControlNet,它利用潜在扩散模型的生成能力来生成真实的细节。具体而言,IRControlNet基于特别生成的条件图像进行训练,这些图像没有干扰性的噪声内容,从而实现稳定的生成性能。此外,我们设计了一种区域自适应恢复指导,可以在推理过程中修改去噪过程,而无需重新训练模型,允许用户通过可调的指导尺度来平衡真实感和保真度。大量实验表明,DiffBIR在盲图像超分辨率、盲人脸恢复和盲图像去噪任务上,相较于现有的最先进方法表现出明显的优越性,适用于合成和真实世界数据集。

Contribution

1. DiffBIR的设计

  • 解耦BIR问题:DiffBIR将盲图像恢复(BIR)问题分为两个阶段:
    • 恢复模块:负责去除图像中的退化成分。
    • 生成模块:负责再生丢失的图像信息。
  • 统一框架:这种两阶段的设计使DiffBIR能够在一个统一的框架内,首次在盲图像超分辨率(BSR)、盲面部恢复(BFR)和盲图像去噪(BID)任务中达到了最先进的性能。

2. IRControlNet的提出

  • 利用扩散先验:论文提出了IRControlNet,它借助文本到图像的扩散先验来实现真实的图像重建。
  • IRControlNet用于控制生成扩散先验,具体做法是使用预训练的变分自编码器(VAE)进行条件编码,并借鉴ControlNet的结构,通过附加和复制的编码器实现高效控制。

3. 可控模块的引入

  • 无训练的可控模块:引入了一种区域自适应恢复指导模块,通过区域自适应恢复指导,利用设计的区域自适应MSE损失,在每个采样步骤中将生成结果与高保真指导图像进行比较,实现保真度与质量之间的权衡。低频区域更受高保真指导图像的影响,而高频区域则保持更多的生成能力
  • 用户偏好的灵活性:这种设计使得用户可以根据个人需求,在生成的图像质量和真实感之间找到平衡,提供了更高的控制能力。

总结

这段文字强调了DiffBIR在盲图像恢复领域的重要创新,尤其是在框架设计、生成模块的有效性和用户控制能力等方面的突出贡献。

Method

Restoration Module

  • 去除降质:RM的主要目标是去除低质量(LQ)图像中的干扰性降质,恢复出高质量(HQ)图像,而不生成任何新的内容。
  • 条件图像生成:RM不仅负责恢复图像,还生成适合用于训练生成模块的条件图像。这一过程确保生成模块可以在训练时获得可靠的输入。

采用均方误差(MSE)损失:RM模块使用经典的降质模型进行训练,目标是最小化恢复图像与高质量图像之间的MSE损失。具体的损失函数为:

Generation Module

Preliminary: Stable Diffusion.

基于SD,Stable Diffusion 是一种潜在扩散模型,包含一个自动编码器(Autoencoder)。该自动编码器由编码器E和解码器D组成,主要功能是将图像x转换为潜在表示z,并能够将其重建回原始图像。

优化目标:潜在扩散模型的优化过程定义为:

x 和 c 从数据集中采样,z=E(x),t 是均匀采样的时间步,ϵ 是从标准高斯分布采样的噪声。

**IRControlNet-**条件编码 (Condition Encoding)

  • VAE编码器:在IRControlNet中,我们使用预训练的变分自编码器(VAE)编码器 E 来将可靠的条件图像 IRM 编码到潜在空间中。公式为:

    • 输出cRM 是获得的条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值