【深度学习】在Ubuntu中安装Anaconda+pycharm+跑通YOLOv8项目源代码+训练自己的数据集

本文详细描述了如何在Ubuntu虚拟机中安装Anaconda,创建Python环境,安装PyCharm,配置CUDA,以及运行YOLOv8项目,包括训练自定义数据集的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为一些特殊的原因,需要从之前CPU的win跑代码转移到GPU的服务器Ubuntu里面去跑,故在此记录一下安装软件和搭建环境的一些步骤,码一下以便以后查看。


因为服务器提前安装了英伟达驱动,在此就不赘述驱动程序的安装了。
ps:
如果在终端输入

nvidia-smi

显示以下即为驱动程序已安装
在这里插入图片描述
如果是以下即为未安装驱动程序(图为网上查找的)
在这里插入图片描述
安装Anaconda+pycharm整体流程是借鉴小白菜的笔记(笔记)ubuntu20.04里安装anaconda然后在conda里安装pytorch这篇文章。

1.安装Anaconda

1.1下载Anaconda安装包

安装Anaconda的详细过程借鉴萝北村的枫子的文章Ubuntu安装Anaconda详细步骤(Ubuntu22.04.1,Anaconda3-2023.03)
进入Anaconda官网:https://repo.anaconda.com/archive/
我下载的是2021.11_Linux_x86
在这里插入图片描述
将下载中的文件移动到新创建的文件夹anaconda中
在这里插入图片描述

1.2安装Anaconda

点击空白处,选择终端打开
在这里插入图片描述
输入命令行:

bash Anaconda3-2021.11-Linux-x86_64.sh

在这里插入图片描述
输入yes,然后回车即可
在这里插入图片描述
后面会显示协议的一些内容,一直回车即可,直到显示让你输入yes
在这里插入图片描述
输入yes
选择默认的安装目录(默认在用户主目录下创建一个名为anaconda3的文件夹作为安装地址),等待安装完成
注意:此处默认安装的路径直接回车即可,不要输入新的地址,我刚开始以为跟着输入yes,结果就是安装到新创建的yes这个文件夹,后面打开的时候就有bug,然后重新安装了一遍,第二个>>> 直接回车不要输入
在这里插入图片描述
输入yes
在这里插入图片描述
安装完成
在这里插入图片描述
进入安装文件右击,终端打开,输入conda list即可看到已安装的anaconda
在这里插入图片描述
安装完成后,之前建立的anaconda文件夹及安装包删除即可。

2.使用Anaconda搭建环境

创建环境的详细步骤在我之前的笔记中有写,此处不再赘述,可以参考:【深度学习】使用GPU(CUDA)跑通YOLOv5源码,包含搭建环境+训练数据集+预测(整套流程)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
慢慢等待安装即可。
在这里插入图片描述
安装完成后可以通过以下命令进行查看是否安装成功

import torch                           
import torchvision                          
print(torch.cuda.is_available())            
print(torch.backends.cudnn.is_available()) 
print(torch.version.cuda)                  
print(torch.backends.cudnn.version())      

在这里插入图片描述
tips: 我发现安装anaconda后,打开终端都会有前面的(base),强迫症想取消掉,然后找了解决方法:
在这里插入图片描述
以后如果想进入某环境,直接使用conda avtivate命令进入即可。
在这里插入图片描述
至此,anaconda安装完成+python虚拟环境搭建完成。

3.安装pycahrm

3.1下载pycharm

进入官网:https://www.jetbrains.com/pycharm/download/?section=linux#section=linux
下载压缩包,我下载的是社区版就够用了。下载后我新建了一个pycharm的文件夹,将压缩包解压到此。
在这里插入图片描述
在这里插入图片描述
在命令行输入:

cd pycharm-community-2022.2.4/bin/
./pycharm.sh

在这里插入图片描述

3.2添加环境

点击pycharm界面的右下角添加解释器
在这里插入图片描述
在这里插入图片描述

3.3添加pycharm的图标

此处借鉴的是
炼丹炼丹的文章Ubuntu系统下设置桌面图标快捷方式(以Pycharm为例)
添加桌面图标可以直接点击图标就进入应用,不用再使用命令行进入
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第五行就是应用打开的所在位置,第六行是图标所在位置
在这里插入图片描述
在这里插入图片描述

4.跑通YOLOv8项目

去官网下载YOLOv8源码以及预训练权重,我下载的是YOLOV8s.pt:https://github.com/ultralytics/ultralytics
下载完成后使用pycharm打开项目
安装依赖:
在这里插入图片描述
YOLOv8好像还要安装一个ultralytics包

pip install ultralytics

将下载的权重放在根目录下即可
在这里插入图片描述
验证环境配置是否能够成功跑通项目:

yolo predict model=yolov8s.pt source='ultralytics/assets/bus.jpg'

在这里插入图片描述
成功跑通:
在这里插入图片描述
在这里插入图片描述

5.训练自己的数据集

此处指简略的写一些流程,详细可以参考我的上一篇文章:
【深度学习】使用GPU(CUDA)跑通YOLOv5源码,包含搭建环境+训练数据集+预测(整套流程)
我是将自己的数据集放入根目录下的own_datas文件夹中,训练集验证集如图所示。需要自己编写一个own_datas.yaml

在这里插入图片描述
own_datas.yaml就是写清数据集所在位置,以及数据集中的类,以及分别的标签是啥。

在这里插入图片描述
使用命令行进行开始训练

在这里插入图片描述
此处贴一下命令行的格式:

在这里插入图片描述
训练完成后,会在项目根目录下的runs文件夹中找到训练结果。

在这里插入图片描述

结束语

浅浅记录自己在服务器Ubuntu中安装Anaconda和pycharm的全过程,以及跑通YOLOv8项目+训练自己的数据集的全过程。

### 安装准备 为了在Ubuntu虚拟机上顺利安装Anaconda,建议确认网络连接正常,并更新系统软件包列表: ```bash sudo apt update && sudo apt upgrade -y ``` ### 下载Anaconda安装文件 考虑到官方下载速度可能较慢[^1],可以选择其他可靠镜像源获取最新版的Anaconda安装脚本。这里提供一种用的方法来下载适合Linux系统的Anaconda版本: ```bash cd ~ wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh ``` 上述命令会将Anaconda安装文件保存至用户的主目录下。 ### 执行安装过程 完成下载之后,在终端中运行如下指令启动安装向导[^2]: ```bash bash ~/Anaconda3-2024.06-1-Linux-x86_64.sh ``` 按照屏幕提示操作即可。常情况下,默认选项适用于大多数场景。需要注意的是,在安装过程中会被询问是否同意许可协议以及设置安装路径等问题。 ### 修改环境变量(可选) 如果希望每次打开新终端时自动加载Anaconda环境,则可以在`.bashrc`或其他shell配置文件里添加相应路径。对于某些特定情况下的Python版本管理需求,可以创建新的软链接指向所需版本的解释器[^3]。 请注意,修改默认Python解释器的行为需谨慎处理,以免影响依赖于原生Python的应用程序功能。 ### 创建并激活Conda虚拟环境 安装完成后,可以过以下方式建立自定义的Python开发环境: ```bash conda create --name myenv python=3.9.5 conda activate myenv ``` 这一步骤有助于隔离不同项目之间的库依赖关系,保持工作区整洁有序。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值