知识点
1)股票价格是较为常见的时间序列数据
2)量化交易是大宗商品交易市场中的重要分析交易方法
3)线性回归模型基于最小二乘方法得到模型最优解
4)SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支。
实验目的
1)学习建立线性回归模型对股票进行预测
2)学习建立SVR对股票进行预测
3)学习对时序数据进行预处理与可视化
实验环境
1)Oracle Linux 7.4
2)Python 3
载入分析所需要用到的包,读取并展示数据
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing, model_selection, svm
读取数据并查看前五行
df = pd.read_csv('/root/experiment/datas/ZBH.csv')
df.head()
数据预处理,去掉缺失值
df = df[['Adj Close']]
df = df.dropna()