基于SVR和线性回归的股票预测模型

知识点

1)股票价格是较为常见的时间序列数据

2)量化交易是大宗商品交易市场中的重要分析交易方法

3)线性回归模型基于最小二乘方法得到模型最优解

4)SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支。


实验目的

1)学习建立线性回归模型对股票进行预测

2)学习建立SVR对股票进行预测

3)学习对时序数据进行预处理与可视化

实验环境

1)Oracle Linux 7.4

2)Python 3


载入分析所需要用到的包,读取并展示数据

import pandas as pd  
import numpy as np  
import datetime
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing, model_selection, svm

读取数据并查看前五行

df = pd.read_csv('/root/experiment/datas/ZBH.csv')
df.head()


数据预处理,去掉缺失值

df = df[['Adj Close']]
df = df.dropna()

数据可视化


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶知秋xj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值