- 博客(50)
- 收藏
- 关注
原创 代码细节-transformers加载大模型方法中参数解析及批量input处理方法
输入处理流程按角色和内容拼接消息列表(如[用户: query]末尾添加生成提示符(如将拼接后的文本转换为 Token ID 序列(数值化)。返回 PyTorch 张量格式的字典(含input_ids等键)。输出示例inputs = {"input_ids": tensor([[ 100, 2034, ... ]]), # Token ID 序列"attention_mask": tensor([[1, 1, ... ]]) # 掩码标识有效部分此输出可直接用于进行推理。
2025-07-10 15:32:11
374
原创 记忆管理框架MemOS——在时序推理上较OpenAI提升159%
在大模型应用场景中:陪伴式对话、个性化推荐,到多轮任务协作,模型只靠一次推理、一次检索,远远不够。让 AI 拥有长期记忆,成为新一代大模型应用的关键。
2025-07-09 15:23:08
657
1
原创 以MCP构建大模型应用的服务架构图-参考手机
如日历、地图、相机等。当AI Agent Core需要调用某个功能时,它会按照MCP的规范,将请求(包含意图、参数、上下文信息等)发送出去。它接收用户输入,利用大模型的自然语言理解(NLU)能力来明白用户的意图。当被调用的模块完成任务后,也会按照MCP的规范,将结果或状态反馈给AI Agent Core。AI Agent Core处理完任务后,将结果通过屏幕显示、语音播报等方式反馈给用户。它维护上下文 (Memory) ,记住对话历史、用户偏好等。可能是一些更小的专用模型或工具,比如计算器、翻译器等。
2025-07-09 14:27:27
218
原创 AI项目开发中遇到的关键问题
4、做AI,无论是产品、项目管理还是码农,都需要遇到好的、有追求、专心投入到业务而不是不懂装懂耍手段搞信息和资源封闭的人和团队的;3、AI项目人人都可说,公众号转发了一篇文章,就觉着自己掌握了这个知识;可做到80分容易,做到90分就不是说说这么简单了;2、AI项目是持续性演进项目,需要细心打磨;可现状是急功近利,跑马圈地阶段;5、做AI,需要有恒心和毅力,需要做好精力管理;1、与之前点-线-面-体的分析能够对应起来;AI应用和服务推进过程中遇到的问题——
2025-07-08 10:49:38
211
原创 一个小时学不出一个大学士出来!一个小时只能做一个小时的事,学一小时的知识-202506
因为只有把那些消耗你的小人、琐事、杂念都给彻底割离抛弃,你才有办法让滋养你的贵人、正事、善念填充进你的人生。否则,同样的精力心血花费下去,你就必然辛劳困苦 却依然一事无成。所有人的命运转折,都是从觉醒这一点开始的。越是生活困顿迷茫的时候,越是要下决心 把现有的生活状态给摧毁并重建。
2025-07-04 09:11:14
75
原创 增加砝码,爱自己-202503
当你做到了,不仅你的“过去”改变了,“现在,未来”也都改变了。没有人记得你“昨天”的样子,他们记得的…你的“当下”有创造的力量,你的“决定权”在自己手中,在自己觉醒的灵魂中。爱自己其中最重要的检验方式是与真实的自己对齐。过去不曾存在,如果想要改变过去,那么,**“当下”就可以增添砝码去改变。**这个“过去”才是真正的改变了。后悔没有为自己而活?在意识的那一刻,不是想要改变过去,不断的懊悔对自己说:“如果为自己活就好了”…敢于表达,你的卡点就可以化解,因为你不断的在用意识与真实的自己对齐,所以破局在日程了。
2025-07-04 09:01:37
110
原创 《MCP-Zero: Active Tool Discovery for Autonomous LLM Agents》解决多MCP服务选择、复杂多步任务的MCP-Zero
摘要: MCP-Zero提出了一种主动代理框架,解决大模型工具调用中的高开销和多步任务难题。其核心通过分层检索(先筛选服务器再匹配工具)和迭代请求机制,动态构建跨域工具链,相比传统方法减少98%的token消耗(如APIBank测试中)。实验显示,该框架在3000工具库中准确率达95.5%,且多轮对话性能稳定(传统方法下降37%),但依赖模型能力与检索精度。适用于代码调试等需多工具协同的复杂场景。
2025-07-03 10:53:33
353
原创 Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
提出了Mem0,一个可扩展的以记忆为中心的架构,通过动态提取、合并和检索正在进行的对话中的重要信息来解决上述问题。进一步提出了Mem0g,一个增强的变体,利用基于图的记忆表示来捕捉对话元素之间的复杂关系结构。
2025-06-27 16:13:47
398
原创 RAG技术栈中三种LLM微调方法对比分析- DAP&RAFT&混合检索微调
本文解析了RAG技术栈中三种LLM微调方法:领域自适应预训练(DAP)、检索增强微调(RAFT)和混合检索微调。DAP通过追加领域数据预训练适应专业术语,适合静态专业领域;RAFT训练模型结合检索文档生成答案,提升知识密集型QA的准确性;混合方法动态选择检索策略,平衡效率与准确性。三种方法在语料格式、训练步骤和应用场景上各有特点:DAP需大量领域文本,RAFT需带检索文档的QA对,混合方法需复杂度标注数据。选择时需考虑问题复杂度、知识更新频率等因素,专业领域优先DAP,动态知识库适用RAFT,复杂场景推荐混
2025-06-26 09:49:42
646
原创 工程优化——WebSocket、WSS(WebSocket Secure)和SSE(Server-Sent Events)通信对比
WebSocket、WSS和SSE是三种常见的实时通信技术,主要区别在于通信方向、协议实现和数据格式。WebSocket支持双向通信(如聊天和游戏),WSS是其加密版本,适用于金融等高安全场景;SSE仅支持服务器向客户端的单向文本推送(如新闻更新)。Python示例展示了三种技术的实现方式。选择原则:双向交互用WebSocket,单向推送用SSE,安全需求选WSS。WebSocket功能强大但复杂,SSE轻量简单,WSS提供加密通信。
2025-06-24 15:00:23
388
原创 多智能体框架中两种图StateGraph和MessageGraph的对比分析
摘要:LangGraph框架中的StateGraph和MessageGraph是两类核心图模型,主要区别在于状态管理的灵活性、适用场景和实现复杂度。StateGraph支持自定义状态对象和复杂逻辑(如多步骤任务流程),需显式定义状态结构和更新规则,适合多智能体协作等场景。MessageGraph仅管理消息列表,简化了对话系统设计(如聊天机器人),但功能受限。选择依据取决于需求:复杂状态管理用StateGraph,纯对话场景用MessageGraph。两者在状态结构、适用性和代码复杂度上形成鲜明对比。
2025-06-23 17:22:27
921
原创 CDN(内容分发网络)概念介绍
当用户访问网站时,CDN会根据用户所在位置,自动选择距离最近的服务器提供内容。例如,深圳用户访问北京的服务器时,如果CDN在两地之间有节点,内容会直接从该节点传输,而不是从北京服务器。:双十一期间,用户下单后,商品可能提前从就近的仓库发货,而不是从总部集中配送。CDN(内容分发网络)是一种通过技术手段让网络内容更快到达用户的方法,类似于“快递网络”,但更智能。:CDN通过中心平台调度流量,将用户请求分散到多个节点,避免单一服务器过载。:即使中心服务器故障,CDN节点仍能提供服务,保障业务连续性。
2025-06-23 15:23:38
417
原创 langchain框架中各种Agent(LLMSingleAgent & ReactAgent & Plan-and-Execute Agent)原理方式对比
LangChain框架中的LLMSingleActionAgent与ReAct Agent等类型在内部原理上存在显著差异。LLMSingleActionAgent采用静态单步决策机制,通过LLMChain和输出解析器直接执行动作,适合简单任务但缺乏灵活性。ReAct Agent则通过推理与行动的动态协同处理复杂任务,支持工具调用修正和数据验证。此外,Zero-shot ReAct适用于零样本任务,Conversational ReAct结合记忆优化多轮对话,Plan-and-Execute Agent则预先
2025-06-19 11:45:46
875
原创 大模型部署框架对比-LM Studio VS Ollama
5 本地化运行:该应用支持在本地运行大语言模型,避免了将数据发送到远程服务器的需要,这对于注重数据隐私和安全的用户来说是一个重要的优势。总的来说,LM Studio 为普通用户提供了便捷的途径来探索和使用大型语言模型,无需复杂的环境配置或编程知识,即可在本地与高级 AI 模型进行交互。这些模块协同工作,实现了高效的推理和内存管理。2 简单直观的操作流程:用户只需选择喜欢的模型,点击下载,等待下载完成后,通过 LM Studio 的对话界面加载本地模型,就可以开始与 AI 进行对话。
2025-06-05 10:54:57
839
原创 langchain框架-对比分析chain的三种实现方式
方式一和方式二主要适用于简单的 RAG 链路,用户输入一个字符串形式的问题。方式二更加简洁。方式三提供了更高的灵活性和扩展性,可以处理更复杂的输入结构,适用于需要从多个字段中提取信息的场景。通过对比可以看出,三种方式各有优劣,选择哪种方式取决于具体的应用需求和输入数据的复杂性。
2025-05-29 17:13:57
303
原创 代码工程之执行时间测试-time模块和 timeit 模块
特性time模块timeit模块设计目标简单时间差计算高精度性能测试准确性低(受系统干扰)高(多次运行、隔离干扰)灵活性低(无环境隔离、无重复测试)高(支持 setup、repeat、Timer 类)适用场景调试、快速测量性能优化、算法比较、多线程测试推荐使用无需高精度时需要精确测量时通过合理选择,开发者可根据需求平衡精度与效率。
2025-05-29 16:21:20
808
原创 智能体通信协议之A2A和ANP对比分析
A2A协议是企业级智能体协作标准,基于HTTP/JSON-RPC等技术实现智能体间的任务分配与状态同步,适合企业内部系统集成。其核心是通过Agent Card元数据实现能力发现,支持同步/异步通信和全生命周期任务管理,但缺乏共享知识库和复杂推理能力。与面向开放互联网的ANP协议相比,A2A在企业认证、集中式协作方面更具优势,而ANP侧重去中心化身份认证和跨平台协作。选择依据主要取决于应用场景(内部/开放)、身份认证需求(企业级/DID)和扩展性要求,典型如订单处理选A2A,跨平台AI助手选ANP。两者形成互
2025-05-28 14:02:04
671
原创 项目代码工程优化之concurrent.futures异步编程(二)
是模块中用于实现多进程并发执行任务的类。它通过创建和管理一个进程池,将工作负载分配给多个进程,从而提高 CPU 密集型任务的执行效率。通过submitmap等方法,可以方便地提交任务、等待任务完成和处理任务结果。同时,提供了异常处理和回调机制,增强了程序的健壮性和灵活性。
2025-05-28 11:46:52
418
原创 项目代码工程优化之concurrent.futures异步编程(一)
模块提供了一个高级接口,用于异步执行函数或方法,主要通过和两种执行器实现。通过submit方法可以提交任务,通过map方法可以并行处理列表中的每个元素。Future对象提供了对异步任务的状态和结果的访问,包括done()running()cancel()result()等方法,以及用于注册回调函数。通过这些功能,可以方便地实现多线程和多进程编程,提高程序的执行效率和响应速度。
2025-05-28 11:40:40
371
原创 LangGraph框架中针对MCP协议的变更-20250510
工具生态扩展:通过标准化接口接入多源工具,减少定制化开发。异步与实时性:优化异步通信机制,支持高并发场景。复杂任务分解:结合ReAct算法,实现多工具协同的自动化流程。未来,随着MCP生态的成熟,LangGraph或进一步整合服务发现、权限管理等企业级功能,成为智能体开发的核心框架。
2025-05-11 22:04:39
1024
原创 开发环境配置——os.getenv 和 load_dotenv 的使用方法
适用于任何需要读取环境变量的场景,包括生产环境(如从 Docker/Kubernetes 环境变量读取配置)。适用于开发环境,通过文件管理敏感配置(如 API 密钥、数据库密码),避免硬编码。文件中的键值对加载到 Python 进程的环境变量中,支持从文件动态注入配置。模块提供的方法,用于读取操作系统环境变量。仅用于读取已存在的环境变量(无论是系统变量还是。文件加载环境变量到当前进程。),通过加载不同文件切换环境。若变量不存在,可返回默认值(文件中的变量,需先通过。将变量加载到环境变量中。
2025-03-14 10:29:45
1228
原创 LangChain-Core、LangChain-Community、LangChain-Experimental核心组件详解与示例
的模块化仓库,涵盖大模型服务(如通义千问)、向量数据库(如Pinecone)、工具接口(如Google Search API)等,由社区维护并保持可选依赖。开发者应根据需求合理选择模块:核心业务逻辑使用Core,快速接入外部服务使用Community,前沿技术预研使用Experimental。(如LCEL表达式语言),是构建语言模型应用的基石。其设计目标是保持轻量级依赖,同时通过标准化的接口实现跨模型和工具的兼容性。,例如需要高权限访问的代理、未经验证的算法或前沿技术(如新型推理策略)。
2025-03-13 11:44:22
2171
原创 langchain组件概述
降低了依赖冲突,增强了灵活性。开发者可通过LCEL快速构建生产级应用,结合LangSmith实现全生命周期管理。其核心价值在于标准化接口、链式组合和扩展性,适用于智能对话、数据分析和RAG(检索增强生成)等场景。最新版LangChain通过模块化设计(如拆分为。
2025-03-13 11:40:18
1630
原创 网络请求签名系统的作用与原理
签名系统是网络请求的“安全卫士”,通过AK/SK和Sign的组合,解决了身份验证、防篡改、防重放三大问题。AK用于“你是谁”,SK用于“证明你是你”,Sign是“证明过程”的结果。实际开发中,只需按照接口文档的规则生成Sign即可,加密算法由服务端实现。
2025-03-13 09:39:47
508
原创 【fronm X】Manus初识-20250306
Manus AI 生成排名建议,将候选人分为不同等级(例如:高级候选人、具有基本强化学习经验的候选人、无强化学习经验的候选人),并提供候选人资料和评估标准等支持材料。Manus AI 拥有自己的知识和记忆,可以从用户的反馈中学习,并在处理类似任务时应用学到的知识,提高效率和准确性。Manus AI 模拟人类的工作方式,例如,它可以解压缩文件、浏览网页、阅读文档,并从中提取重要信息。Manus AI 被视为人机协作的新范式,旨在扩展人类的能力,放大影响力,并将人类的愿景变为现实。官网展示了各种具体的用例,
2025-03-06 14:03:10
332
原创 Jenkins与k8s的关系
两者结合后,Jenkins 负责按流程做菜(构建、测试),K8s 负责高效调度资源(部署、扩缩容)。场景:如果突然有 100 道菜要做(高并发任务),Jenkins 可以临时借用 K8s 的容器资源(灶台),任务完成后自动释放。
2025-02-26 19:19:46
657
原创 k8s技术概览
YAML 文件:类似乐高的组装说明书,告诉 k8s 需要哪些组件(如 3 个前端实例、1 个数据库)。CI 完成后,CD 工具(如 Argo CD)修改 k8s 的 YAML 文件,指向新镜像版本。镜像拉取:kubelet 调用 Docker 接口从仓库(如 Docker Hub)下载镜像。YAML 文件是任务指令,Docker提供标准化工具,CI/CD是流水线工人。比喻:像快递调度员,根据服务器负载、位置等,决定把容器放在哪台机器。容器启停:通过 Docker 启动容器,并绑定网络、存储等资源。
2025-02-26 11:21:15
561
原创 Kubernetes(k8s)与 Docker 的协同流程
Dockerfile:写一份“快递包装说明书”,比如“用 Python 3.9 环境,安装依赖库,复制代码文件”。构建镜像:运行 docker build,Docker 会根据说明书打包成一个“快递盒”(容器镜像)。Pod:最小的调度单位,像“运输箱”,一个 Pod 可包含多个容器(比如网站容器+日志收集容器)。上传仓库:将镜像上传到“云仓库”(如 Docker Hub),就像把快递盒存到快递公司的总仓库。创建容器:k8s 调用 Docker 接口,在服务器上启动容器(拆快递盒,取出商品运行)。
2025-02-26 10:40:25
337
原创 k8s概念理解&它与docker的关系
当你在 k8s 中部署一个程序时,它会自动从镜像仓库(如 Docker Hub)拉取镜像,并在集群中启动容器。如果把软件部署比作物流运输,Docker 是集装箱(标准化包装货物),而 k8s 是物流公司的智能调度中心。Docker 把程序及其依赖环境打包成轻量化的“集装箱”(容器镜像),确保开发、测试、生产环境一致。比如,开发人员将 Java 程序打包成镜像,测试人员直接运行镜像,无需担心环境差异。k8s 检测到新镜像后,自动替换旧容器,并逐步更新服务器上的程序(滚动更新)。
2025-02-26 10:10:05
283
原创 Spring Boot框架与云端部署的关系
例如,通过 Spring Boot 的spring-boot-starter-actuator模块,可以监控云端应用的运行状态(类似用手机查看家电耗电量);Spring Boot 应用可以轻松打包成 Docker 镜像(类似把家电标准化装箱),部署到 Kubernetes 集群,实现弹性扩容和故障恢复,特别适合高并发的云端场景。3、部署阶段:用mvn package命令将项目打包成 JAR 文件,通过 SSH 上传到云服务器,一行命令java -jar app.jar 即可启动服务。2、与云服务无缝整合。
2025-02-26 09:58:09
246
原创 快速理解后台部署框架Spring Boot
你不需要自己下载主板驱动、安装操作系统,只需要选择需要的配件(比如显卡型号),就能快速拼出一台能用的电脑。传统 Spring 就像买家电要自己组装电路板,而 Spring Boot 就像智能家电——插电即用。Spring Boot 的「火锅全家桶」(如spring-boot-starter-web)直接打包了 Web 开发所需的全部材料,避免漏买调料。新手村任务:先用 Spring Boot 搭一个带数据库的博客系统(就像用乐高搭房子)高级挑战:整合 Flink 分析实时访问数据(用智能系统分析监控画面)
2025-02-26 09:37:13
293
原创 openwebui命令
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
2025-02-12 19:05:58
136
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人