LangGraph框架中针对MCP协议的变更-20250510

MCP(Model Context Protocol)的出现为AI Agent与外部工具及数据源的集成提供了标准化接口,而LangGraph作为基于LangChain的智能体开发框架,在MCP协议的影响下也进行了适配性调整,主要体现在工具调用、异步交互和多步推理的优化上。以下结合实例详细说明相关变更及关联内容:


一、LangGraph对MCP协议的核心适配

  1. 工具动态加载与MCP集成
    LangGraph新增了对MCP工具的自动加载功能,通过langchain_mcp_adapters库实现与MCP服务器的无缝对接。开发者只需通过load_mcp_tools函数加载MCP会话中的工具列表,即可让Agent动态调用远程或本地工具。例如,在数学计算场景中,Agent可调用MCP服务器提供的addmultiply工具。
    示例代码

    async with ClientSession(read, write) as session:
        tools = await load_mcp_tools(session)  # 动态加载MCP工具
        agent = create_react_agent(model, tools)  # 创建支持MCP工具的Agent
    
  2. 异步会话管理与MCP通信
    MCP协议基于客户端-服务器架构,依赖异步通信(如HTTP/WebSocket)。LangGraph为此优化了异步任务处理机制,通过asyncio支持与MCP服务器的长时会话。例如,客户端通过stdio_client建立连接后,利用异步上下文管理器维护会话状态。

  3. 多步推理与工具链调用
    LangGraph的create_react_agent结合MCP工具,能够自动分解复杂任务为多步操作。例如,在问题“计算(3+5)×12”中,Agent会先调用add工具得到中间结果8,再调用multiply工具完成最终计算。
    执行流程

    • 步骤1:调用add(a=3, b=5) → 返回8。
    • 步骤2:调用multiply(a=8, b=12) → 返回96。

二、LangGraph与MCP结合的典型实例

以下以数学计算场景为例,展示LangGraph如何通过MCP协议调用工具:

  1. MCP服务器端定义工具
    创建math_server.py,声明addmultiply函数为MCP工具:

    from mcp.server.fastmcp import FastMCP
    mcp = FastMCP("Math")
    @mcp.tool()
    def add(a: int, b: int) -> int:
        return a + b
    @mcp.tool()
    def multiply(a: int, b: int) -> int:
        return a * b
    if __name__ == "__main__":
        mcp.run(transport="stdio")
    
  2. LangGraph客户端调用流程
    客户端通过异步任务连接MCP服务器,并运行Agent:

    from mcp.client.stdio import stdio_client
    from langgraph.prebuilt import create_react_agent
    async def run_agent():
        async with stdio_client(server_params) as (read, write):
            async with ClientSession(read, write) as session:
                tools = await load_mcp_tools(session)
                agent = create_react_agent(model, tools)
                response = await agent.ainvoke({"messages": "计算(3+5)×12"})
    
  3. 输出结果示例
    Agent的响应包含分步工具调用和最终结果:

    {
        "messages": [
            {"content": "计算(3+5)×12"},
            {"tool_calls": [{"function": "add", "args": {"a":3, "b":5}}]},
            {"tool_calls": [{"function": "multiply", "args": {"a":8, "b":12}}]},
            {"content": "结果为96"}
        ]
    }
    

三、LangGraph框架的扩展性优化

  1. 支持多种传输协议
    LangGraph的MCP适配器不仅支持stdio本地通信,还可扩展至HTTP/SSE(Server-Sent Events),满足企业级高并发需求。例如,阿里云Hologres通过SSE模式实现与MCP服务器的解耦部署。

  2. 与知识管理组件的结合
    LangGraph的记忆管理模块(如RAG技术)可与MCP工具联动。例如,在故障诊断场景中,Agent通过MCP调用日志查询工具,并结合向量数据库检索历史案例,生成修复方案。


四、总结

MCP协议的出现推动了LangGraph在以下方向的演进:

  • 工具生态扩展:通过标准化接口接入多源工具,减少定制化开发。
  • 异步与实时性:优化异步通信机制,支持高并发场景。
  • 复杂任务分解:结合ReAct算法,实现多工具协同的自动化流程。

未来,随着MCP生态的成熟,LangGraph或进一步整合服务发现、权限管理等企业级功能,成为智能体开发的核心框架。

<think>好的,我现在需要帮助用户了解如何在Langchain框架中集成和使用MCP协议进行工具开发。首先,我需要回顾用户提供的引用内容,尤其是引用[3]中的示例代码,这可能直接相关。 用户的问题涉及LangchainMCP协议的集成,但引用中提到的示例是使用uv工具创建工程,并通过Python脚本配置StdioServerParameters来连接MCP服务器。因此,可能需要将类似的配置方法应用到Langchain的环境中。 首先,我应该确认Langchain是否支持MCP协议,或者需要自定义工具来实现。根据引用[2],MCP是专为控制大型语言模型设计的协议,可能在Langchain中需要通过自定义接口或适配器来集成。 接下来,步骤可能包括安装MCP库,配置服务器参数,创建工具类,并将工具集成到Langchain的流程中。需要参考引用[3]中的代码示例,比如设置StdioServerParameters,并在Langchain中调用这些配置。 此外,用户可能需要具体的代码示例,所以需要构造一个简单的例子,比如创建一个数学计算工具,通过MCP协议与服务器通信。同时,需要确保代码符合用户提到的格式要求,比如使用$...$和$$...$$的数学表达式,以及正确的中文回答。 还需要考虑可能的相关问题,比如调试技巧、性能优化和应用场景,这些都可以在相关问题部分提出。同时,确保引用标记正确添加,如引用[3]在代码示例部分。 最后,验证整个流程的逻辑是否正确,代码示例是否能实际运行,或者至少结构正确,符合用户提供的引用内容。确保回答清晰,逐步引导用户完成集成过程。</think>在Langchain框架中集成MCP协议需要结合MCP的通信协议Langchain的工具调用机制。以下是分步实现方法及示例代码: ### 一、环境搭建 1. 安装MCP库(参考引用[3]): ```bash uv add mcp ``` ### 二、基础配置 ```python from mcp import StdioServerParameters # 配置MCP服务端连接(如引用[3]示例) server_params = StdioServerParameters( command="python", args=['/path/to/your/server.py'], env={'MCP_VERBOSE': '1'} ) ``` ### 三、工具类开发 假设要创建数学公式处理工具: ```python from langchain.tools import BaseTool from mcp import ModelClient class MathTool(BaseTool): name = "mcp_math_processor" description = "通过MCP协议执行高级数学运算" def _run(self, expression: str) -> str: client = ModelClient(server_params) response = client.execute( task_type="math_processing", input_data={"expression": expression} ) return response['result'] async def _arun(self, *args, **kwargs): raise NotImplementedError("异步暂不支持MCP协议") ``` ### 四、Langchain集成 ```python from langchain.agents import initialize_agent from langchain.llms import OpenAI llm = OpenAI(temperature=0) tools = [MathTool()] agent = initialize_agent(tools, llm, agent="zero-shot-react-description") # 示例调用 result = agent.run("计算积分$\int_{0}^{1} x^2 dx$") print(result) # 输出应包含$\frac{1}{3}$的LaTeX表达式 ``` ### 五、协议交互原理 数学表达式通过MCP协议传输时,会保持LaTeX格式: $$ \int_{a}^{b} f(x)dx \Rightarrow \text{MCP序列化} \Rightarrow JSON+LaTeX $$ 该过程满足引用[2]中MCP协议对结构化数据交换的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值