2D关键点检测之SCNet:Improving Convolutional Networks with Self-Calibrated Convolutions

image.png

论文链接:Improving Convolutional Networks With Self-Calibrated Convolutions
时间:2020 CVPR2020
作者团队:Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Changhu Wang, Jiashi Feng
分类:计算机视觉–人体关键点检测–2D topdown_heatmap

目录:

1.SCNet背景
2.SCNet姿态识别
3.SCNet网络架构图
4.引用

1.主要在于学习记录,如有侵权,私聊我修改
2.水平有限,不足之处感谢指出


1.SCNet背景

  大多数卷积神经网络的改进主要关注于调整网络模型的架构,以产生丰富的有限元分析。
  CNNs的进步主要集中于设计更复杂的结构,从而增强它们表示学习的能力。
  该论文不关注架构,只通过改进基本的卷积模块来提升整个网络的性能,提出的自校准卷积SC可以更完整、更准确的定位目标物体。
  下图是可视化不同卷积方式的resnet产生的特征激活图,带自校准卷积的resnet可以更准确的定位目标物体。
image.png


2.SCNet姿态识别

  该论文提出了一种由多个卷积注意力组合的自校准模块,用于替换基本的卷积结构,在不增加额外参数和计算量的情况下,该模块能够产生全局的感受野。相比于标准卷积,该模块产生的特征图更具有区分度。
 该模块的优势所在:
  1、传统卷积只能对小区域进行卷积操作,而自校准卷积模块使每个空间位置可以自适应的编码来自长范围区域的相关信息。
  2、自校准卷积是普遍适用的,能够轻易地应用到标准的卷积层中,而不需要引入任何参数和复杂的头部或改变超参数。

  1. 网络结构部分
      传统卷积
     存在输入x,卷积核k,输出z,则传统卷积操作的公式:
    y i = k i ∗ X = ∑ j = 1 k i j ∗ x j , \begin{aligned} \\ \text{y}_i=\text{k}_i*\textbf{X} =\sum\limits_{j=1}\mathbf{k}_i^j*\mathbf{x}_j, \end{aligned} yi=kiX=j=1kij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值