算法练习-长度最小的子数组(思路+流程图+代码)

难度参考

        难度:简单

        分类:数组

        难度与分类由我所参与的培训课程提供,但需要注意的是,难度与分类仅供参考。以下内容均为个人笔记,旨在督促自己认真学习。

题目

        给定一个含有个正整数的数组和一个正整数s,找出该数组中满足其和≥s的长度最小的连续子数组,并返回其长度。如果不存在符合条件的子数组,返回0。

        示例1:

        输入:s=7,
                   nums=[2,3,1,2,4,3]
        输出:2
        解释:子数组[4,3]是该条件下的长度最小的子数组。

思路

暴力做法

        使用暴力法解决这道题的思路是遍历所有可能的连续子数组,计算它们的和,并找到满足条件的最小子数组长度。以下是暴力法的详细题解:

  1. 初始化一些变量,包括最小长度 minLength 初始为正无穷大。

  2. 使用两层循环,外层循环以每个元素为起点,内层循环遍历从该起点开始的子数组。外层循环变量 start 从0开始,内层循环变量 endstart 开始。

  3. 在内层循环中,计算子数组的和 sum,即从 nums[start]nums[end] 的元素的累加和。

  4. 如果 sum 大于或等于目标值 s,说明当前子数组的和满足条件,可以记录下当前子数组的长度 end - start + 1

  5. 在外层循环中,不断更新 minLength,即记录当前满足条件的子数组的最小长度。

  6. 继续外层循环,直到遍历完整个数组。

  7. 最后,如果 minLength 没有被更新过,说明没有满足条件的子数组,返回0;否则,返回 minLength

        这个算法的核心思想是遍历所有可能的子数组,计算它们的和并比较长度,找到最小长度的满足条件的子数组。由于使用了两层循环,时间复杂度是O(n^2),其中n是数组的长度。这个算法虽然不如滑动窗口法高效,但是可以解决问题。

        暴力做法不再提供示例与梳理,感觉可以直接看代码。

滑动窗口

        可以使用滑动窗口的方法解决这个问题。滑动窗口是维护一个连续子数组的常用技巧,通过左指针和右指针来移动窗口,根据窗口内元素的和来调整窗口的大小。具体步骤如下:

  1. 初始化左指针 left 为0,右指针 right 为0,以及窗口内元素的和 sum 为0。

  2. 使用右指针 right 向右遍历数组,不断将元素添加到窗口内,并更新 sum

  3. sum 大于等于给定的正整数 s 时,记录当前窗口的长度 right - l

### Python 算法题解题思路及实现 #### 解题思路概述 在解决算法问题时,通常需要遵循一定的逻辑框架来分析和解决问题。对于Python初学者来说,掌握基本的算法思想是非常重要的[^1]。以下是针对Python算法题的一些通用解题策略: 1. **理解题目需求** 阅读并彻底理解题目描述,明确输入数据的形式以及期望的输出结果。 2. **选择合适的算法** 基于问题的特点,选取最适合的算法模型。例如,排序问题可以选择冒泡排序、选择排序或快速排序;查找问题则可能涉及二分查找等技术[^4]。 3. **设计解决方案** 制定清晰的计划,考虑边界条件和异常情况处理。通过伪代码或者流程图辅助思考过程。 4. **编码实现** 使用简洁高效的Python语法编写程序,并注意变量命名规范化以便阅读维护。 5. **测试验证** 对完成后的函数进行全面测试,确保其能够正确应对各种类型的输入案例。 --- #### 实现示例:选择排序 下面展示了一个具体例子——选择排序算法的Python实现方式及其工作原理说明: ```python def selection_sort(arr): """选择排序""" n = len(arr) # 获取数组长度 for i in range(n - 1): # 外层循环控制遍历次数 min_index = i # 初始化当前最小值索引位置 for j in range(i + 1, n): # 内层循环用于找到剩余部分中的最小值 if arr[j] < arr[min_index]: min_index = j # 更新最小值索引 # 如果发现更小数值,则交换两者的位置 arr[i], arr[min_index] = arr[min_index], arr[i] return arr # 测试用例 arr = [26, 11, 99, 33, 69, 77, 55, 56, 67] sorted_arr = selection_sort(arr) print(sorted_arr) ``` 上述代码展示了如何利用嵌套循环结构逐步构建有序序列的过程。每次迭代都会找出未排序区域内的最小元素并与首位元素互换位置,从而达到整体升序排列的效果。 --- #### 提高效率的方法 为了提升编程能力,在日常练习过程中还可以尝试以下几点建议: - 学习更多高效的数据结构如堆栈(Stacks),队列(Queues),链表(Linked Lists)等; - 掌握复杂度较低的经典算法比如动态规划(Dynamic Programming),贪心(Greedy Algorithms)等等; - 参考实际项目经验分享文章,了解工业界常用技巧与最佳实践[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yamai Yuzuru

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值