在 Spark 中,RDD(Resilient Distributed Dataset,弹性分布式数据集)是其核心概念之一。以下是关于 Spark 中 RDD 的内核原理、数据共享以及广播变量和累加器的介绍:
目录
一、RDD 内核原理
1,弹性
- RDD 具有弹性的特点,主要体现在以下几个方面:
- 自动进行内存和磁盘数据存储的切换。如果内存不足,RDD 可以自动将部分数据存储到磁盘上,以避免内存溢出。
- 基于 Lineage(血统)机制实现容错。当某个 RDD 的分区数据丢失时,可以通过其血统关系,即从父 RDD 重新计算该分区,而不是从原始数据重新计算整个 RDD。
- 可以根据数据的局部性进行计算任务的调度,提高数据处理的效率。
2,分布式
- RDD 是分布式的数据结构,数据被分割成多个分区,分布在不同的节点上进行并行计算。
- Spark 可以根据集群的资源情况自动进行任务的分配和调度,充分利用集群的计算能力。
3,不可变
- RDD 是不可变的数据结构,一旦创建就不能修改。对 RDD 的操作会返回一个新的 RDD,而不会修改原始的 RDD。
- 这种不可变性使得 RDD 可以进行高效的并行计算,同时也方便了 Spark 的任务调度和容错处理。
二、数据共享
在 Spark 中,数据共享可以通过多种方式实现,其中广播变量和累加器是两种常用的机制。
2-1,广播变量