ITCFN: INCOMPLETE TRIPLE-MODAL CO-ATTENTION FUSION NETWORK FOR MILDCOGNITIVE IMPAIRMENT CONVERSION

论文下载地址:https://arxiv.org/pdf/2501.11276v1

源码下载地址:https://github.com/justinhxy/ITFC

一、主要内容

        本文提出了一种创新的多模态方法来预测轻度认知障碍(MCI)转换,特别关注正电子发射断层扫描(PET)数据缺失的问题,并整合各种医学信息。提出的不完全三模态MCI转换预测网络就是为此目的量身定制的。通过缺失模态生成模块,本文综合了磁共振成像中缺失的PET数据,并使用专门设计的编码器提取特征还开发了信道聚合模块和三模态共关注融合模块,以减少特征冗余,实现有效的多模态数据融合。此外,本文设计了一个损失函数来处理缺失的模态问题并对齐跨模态特征。这些组件共同利用多模态数据来提高网络性能。

二、提出背景

        阿尔茨海默病(AD)是老年人常见的神经退行性疾病。早期预测和及时干预其前驱阶段,轻度认知障碍(MCI),可以降低进展为AD的风险综合各种模式的信息可以显著提高预测的准确性。然而,数据缺失和模态异质性等挑战使多模态学习方法复杂化,增加更多的模态会使这些问题恶化。目前的多模态融合技术往往不能适应医疗数据的复杂性,阻碍了识别模态之间关系的能力

        为了解决这些挑战,本文引入了不完全三模态共同注意融合网络(ITCFN),专为预测轻度认知障碍(MCI)向阿尔茨海默病(AD)的转化而设计。首先,本文提出了缺失模态生成(Missing Modal Generation, MMG)模块来从MRI图像中合成缺失的PET图像。然后,使用专门的编码器提取从每种模态中学习到的特征。最后,将这些特征结合在一个定制的融合模块中,用于MCI转换预测。本研究的主要贡献如下:

开发了一个MMG模块来合成缺失的PET图像,解决了多模态数据可用性问题。

提出了一个ITCFN模型,该模型可以有效地学习和整合多模态PET和MRI成像数据与临床表格数据。

设计了一个新的损失函数来解决数据不平衡问题,并在成像和非成像数据之间对齐特征表示。

三、模型介绍

1、整体架构

图 1 : ITCFN的整体架构。(a)描述网络流程,包括缺失多模态数据、特征提取、多模态融合和损失函数的解决方案。(b) MMG模块基于MRI生成缺失的PET数据。(c) TCAF模块促进多模式融合。

2、MMG模块(Missing Modal Generation Module)

        对于缺少PET模态的受试者,本文引入MMG模块,通过交叉模态变换从MRI中获得PET图像该模块采用简化的矢量量化生成对抗网络(VQGAN),如图1(b)所示。首先,3D卷积编码器(CNN Encoder)处理MRI数据x以获得向量\hat{z}然后使用码本Z\hat{z}的每个编码位置与Z中最近的代码进行匹配,从而得到变量z_{q}。该中间特征\hat{z}被离散化并编码如下:

        进一步,z_{q}经过3D卷积解码器(CNN Decoder)解码,生成PET图像y,表示为:

        通过引入矢量量化技术,可以有效降低生成过程中的不确定性,使生成的数据质量更加稳定。

        为了优化MMG模块的训练,设计了一个混合损失函数,它集成了几个组件:L_{1}损失\pounds _{L_{1}},量化损失\pounds _{Qua},感知损失\pounds _{Per}和对抗损失\pounds _{Adv}。这些组件一起工作以增强生成的PET图像的局部真实感。所提出的混合损失函数表示为:

        其中\pounds _{L_{1}}\pounds _{Qua}\pounds _{Per}\pounds _{Adv}分别为各损耗分量的权重参数。

3、多模态特征处理(Multi-modal Feature Processing)

        在这项工作中,本文设计了特定的编码器,以适应不同数据模式的独特特征和格式,将它们映射到一个共同的特征空间中,以实现有效的融合对于MRI和PET数据,本文使用预训练的3D ResNet50作为视觉编码器提取深度特征,而临床数据通过自定义表编码器处理以增强特征表示得到的高维特征通过16个注意头的多头自注意力机制机制进行加工,增强了融合过程的有效性,提高了模型的整体性能

4、三模态共同注意力融合模块(Triple-modal Co-Attention Fusion Module)

        三模态共同注意力融合(TCAF)模块的架构如图1(c)所示。模态特征通过线性层处理得到对应的K_{i}V_{i},而Q_{multi}是通过将所有模态串联并通过线性层映射得到的。各模态的注意力得分计算公式如下:

        其中d_{i}是向量K_{i}的维数。

        为了充分整合MRI和PET的内在信息,本文采用交叉拼接的方法,再与临床特征拼接,得到最终的输出:

        最后,本文使用预训练的1D DenseNet-121作为分类器预训练参数提高了模型的收敛速度,减少了过拟合

5、损失函数

        为了减轻数据不平衡的影响,本文采用了焦点损失Lfocal,通过动态加权和类平衡来强调少数和难以分类的样本还利用相似分布匹配(SDM)损失来改善MRI, PET和临床数据之间的特征对齐每个模态对的SDM损失分别计算:用于磁共振成像(MRI)和表格的\pounds _{SDM}^{mt} 、用于正电子发射断层扫描(PET)和表格的\pounds _{SDM}^{pt}​ ,以及用于 MRI 和 PET 的\pounds _{SDM}^{mp}综合损失定义为:

        总体损失函数。本文利用联合损失函数来优化整个网络,将特定任务的损失与多模态对齐损失相结合。该整体损失函数表示为加权和:

四、总结与展望

        在这项研究中,本文提出了一种称为ITCFN的创新方法来预测MCI的转换ITCFN方法结合了MRI、PET和临床特征,通过MMG模块有效地管理缺失的PET数据,并通过TCAF模块实现模态融合。与传统的单模态方法和其他多模态深度学习技术相比,该模型表现出优越的分类性能。通过烧蚀研究和对比分析,证实了MMG和TCAF模块的有效性。然而,本研究的方法有一定的局限性。目前,本研究只考虑基线MRI。结合纵向MRI数据可以更深入地了解疾病的进展。此外,本文的模型不包括遗传数据,这可能进一步提高其预测的准确性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值