统计学习方法(第二版) 第三章 KNN算法

本节主要介绍和了解KNN算法。

前言

        k近邻法(k-nearest neighbor ,k-NN)是一种基本分类与回归方法,本节只讨论分类问题中的k近邻法。k近邻法的输入为实例的特征向量,对应于特征空间的点,输出为实例的类别,可以取多类。

        思想:k近邻假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻不具有显示的学习过程。k近邻实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。

        k值的选择,距离的度量即分类决策规则是k邻近法的三要素。

KNN原理小结


一、k邻近算法

二、k近邻模型

        k近邻法使用的模型实际上对应于对特征空间的划分。模型由三个基本要素:1.距离度量2.k值选择3.分类决策规则决定。

1.模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笔写落去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值