马尔可夫模型的两个基本问题实例学习记录
问题一:观测序列概率的前向学习算法
不说理论,因为我也说不清楚,所以直接用例题说明
例题如下:
有一个女生平时经常做的事情是:散步、购物、打扫。当她开心和不开心时会干不同的事情。她的一个好朋友想知道她最近的心情怎么样,但她只告诉朋友,第一天她去购物,第二天去打扫,第三天她在散步。
- 问女生这几天(散步、打扫、购物)出现的可能性大小注意这里不要纠结于题设给出的顺序,这一问是要给出散步、打扫、购物这一序列出现的概率
- 现在朋友要用现有的信息推断出女生这三天最有可能的状态这里的状态指心情
已知:为了显示清楚,我将已知条件截图了
隐状态合集Q={开心 不开心}
观测状态合集V={散步 打扫 购物}
开始解题过程
t=1时,即序列中第一个观测选项散步,对于散步这个观测选项来说,它可能反映着隐藏状态即人物的心情:开心或者不开心。这一映射关系体现在矩阵B(观测状态生成矩阵中),因此,在t=1时刻,我们应重点关注矩阵B