DataLoader中的采样Sampler

我的python不是很好,就很疑惑sampler没有定义next()函数呀,DataLoader是如何调用sampler的?

sampler 本身并没有直接定义 next() 函数,而是通过继承 torch.utils.data.Sampler 类来实现的。

1. Sampler 是如何工作的?

Sampler 只是一个抽象基类,用于定义如何从数据集中选择样本。它不直接实现 next() 函数,而是通过 __iter__() 方法来生成一个迭代器,这个迭代器会返回一个个样本的索引。

DataLoader 使用 Sampler 返回的索引来从 Dataset 中提取样本。由于 Sampler 返回的是样本的索引,所以实际上它提供了一个迭代器,而这个迭代器在 DataLoader 中会被 next() 调用。

2. 具体例子:如何通过 Sampler 迭代

RandomSampler 为例,它的代码大致如下:

class RandomSampler(Sampler):
    def __init__(self, data_source):
        self.data_source = data_source
        self.num_samples = len(data_source)

    def __iter__(self):
        return iter(torch.randperm(self.num_samples).tolist())  # 返回一个随机排列的索引列表

在上面的代码中,RandomSampler 是继承自 Sampler 的自定义采样器。__iter__() 方法通过 torch.randperm(self.num_samples) 来生成一个随机的索引序列,然后返回一个迭代器。

DataLoader 使用 RandomSampler 时,它会通过 next() 调用这个迭代器来获取下一个索引。

具体执行过程:
  1. DataLoader 创建 RandomSampler 的实例。
  2. DataLoader 使用 Sampler 中的 __iter__() 方法返回一个迭代器。
  3. 每次调用 next()Sampler__iter__() 方法就返回下一个样本的索引,直到所有索引都被返回。

3. next() 的调用过程

虽然 Sampler 本身没有实现 next(),但是 DataLoader 会在需要时使用 __iter__() 方法创建一个迭代器。然后,next() 会被调用来获取一个批次的索引。这个过程是由 DataLoader 自动管理的。

具体流程如下:

  1. DataLoader 初始化时,会调用 sampler 对象的 __iter__() 方法来获取一个迭代器。
  2. 在每个 epoch 或每个批次时,DataLoader 会调用 next(),通过迭代器获取下一个索引,获取对应的样本。
  3. 这些索引会被传递给 Dataset,并根据索引从 Dataset 中选取相应的样本。

4. 总结

  • Sampler 是一个迭代器,它通过实现 __iter__() 方法来返回样本的索引。
  • next() 会在 DataLoader 中调用 Sampler 对象的 __iter__() 返回的迭代器来获取样本索引。
  • Sampler 本身并不直接实现 next(),而是依赖于 __iter__() 方法来返回一个可以用 next() 获取的迭代器。

所以,DataLoader 在内部管理了这个过程,并且能够通过 Sampler 提供的迭代器来获取每个批次的样本索引。

可以使用`torch.utils.data.DataLoader`中的`WeightedRandomSampler`类对数据进行重采样。该类可以根据每个样本的权重进行采样,从而实现重采样的目的。具体步骤如下: 1.首先,需要计算每个样本的权重。可以根据样本的类别数量来计算每个样本的权重,使得每个类别的样本被采样的概率相等。例如,对于二分类问题,可以将正负样本的权重分别设置为1和2,这样就可以保证正负样本被采样的概率相等。 2.然后,可以使用`WeightedRandomSampler`类对数据进行重采样。该类需要传入一个权重列表,用于指定每个样本的权重。可以将该类作为`DataLoader`的参数之一,从而实现对数据的重采样。 下面是一个示例代码: ```python import torch from torch.utils.data import DataLoader, WeightedRandomSampler # 假设有一个数据集 dataset,其中包含 n 个样本,每个样本的标签为 label # 首先,计算每个样本的权重 class_count = [0, 0] # 假设有两个类别,分别为 0 和 1 for _, label in dataset: class_count[label] += 1 weights = [1.0 / class_count[label] for _, label in dataset] # 然后,使用 WeightedRandomSampler 对数据进行重采样 sampler = WeightedRandomSampler(weights, num_samples=len(dataset), replacement=True) dataloader = DataLoader(dataset, batch_size=batch_size, sampler=sampler) ``` 在上面的代码中,`class_count`用于统计每个类别的样本数量,`weights`用于计算每个样本的权重。`WeightedRandomSampler`的第一个参数是权重列表,第二个参数是采样的样本数量,第三个参数是是否使用重复采样。最后,将`WeightedRandomSampler`作为`DataLoader`的`sampler`参数传入即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值