我的python不是很好,就很疑惑sampler没有定义next()函数呀,DataLoader是如何调用sampler的?
sampler
本身并没有直接定义 next()
函数,而是通过继承 torch.utils.data.Sampler
类来实现的。
1. Sampler
是如何工作的?
Sampler
只是一个抽象基类,用于定义如何从数据集中选择样本。它不直接实现 next()
函数,而是通过 __iter__()
方法来生成一个迭代器,这个迭代器会返回一个个样本的索引。
DataLoader
使用 Sampler
返回的索引来从 Dataset
中提取样本。由于 Sampler
返回的是样本的索引,所以实际上它提供了一个迭代器,而这个迭代器在 DataLoader
中会被 next()
调用。
2. 具体例子:如何通过 Sampler
迭代
以 RandomSampler
为例,它的代码大致如下:
class RandomSampler(Sampler):
def __init__(self, data_source):
self.data_source = data_source
self.num_samples = len(data_source)
def __iter__(self):
return iter(torch.randperm(self.num_samples).tolist()) # 返回一个随机排列的索引列表
在上面的代码中,RandomSampler
是继承自 Sampler
的自定义采样器。__iter__()
方法通过 torch.randperm(self.num_samples)
来生成一个随机的索引序列,然后返回一个迭代器。
当 DataLoader
使用 RandomSampler
时,它会通过 next()
调用这个迭代器来获取下一个索引。
具体执行过程:
DataLoader
创建RandomSampler
的实例。DataLoader
使用Sampler
中的__iter__()
方法返回一个迭代器。- 每次调用
next()
,Sampler
的__iter__()
方法就返回下一个样本的索引,直到所有索引都被返回。
3. next()
的调用过程
虽然 Sampler
本身没有实现 next()
,但是 DataLoader
会在需要时使用 __iter__()
方法创建一个迭代器。然后,next()
会被调用来获取一个批次的索引。这个过程是由 DataLoader
自动管理的。
具体流程如下:
DataLoader
初始化时,会调用sampler
对象的__iter__()
方法来获取一个迭代器。- 在每个 epoch 或每个批次时,
DataLoader
会调用next()
,通过迭代器获取下一个索引,获取对应的样本。 - 这些索引会被传递给
Dataset
,并根据索引从Dataset
中选取相应的样本。
4. 总结
Sampler
是一个迭代器,它通过实现__iter__()
方法来返回样本的索引。next()
会在DataLoader
中调用Sampler
对象的__iter__()
返回的迭代器来获取样本索引。Sampler
本身并不直接实现next()
,而是依赖于__iter__()
方法来返回一个可以用next()
获取的迭代器。
所以,DataLoader
在内部管理了这个过程,并且能够通过 Sampler
提供的迭代器来获取每个批次的样本索引。