使用OpenCL输出hello,world!
使用设备:orangepi5pro
系统:官方镜像ubuntu 22.04 LTS
1、OpenCL简介
OpenCL(Open Computing Language开放计算语言)是一种开放的、免版税的标准,用于超级计算机、云服务器、个人计算机、移动设备和嵌入式平台中各种加速器的跨平台并行编程。
2、linux系统下安装
在香橙派的官方手册中,手册说明支持OpenCL2.2,作者直接使用vscode使用ssh连接了开发板,使用如下命令安装OpenCL和OpenCV
sudo apt update
sudo apt install opencl-headers ocl-icd-opencl-dev
sudo apt install libopencv-dev # 用于图像处理(在本程序中并未使用)
检查是头文件否安装成功
ls /usr/include/CL
显示如下:
检查OpenCL库是否存在
ls /usr/include/CL
显示如下:
至此,说明我们的OpenCL已经安装完成
3、输出hello,world代码
代码结构:
CMakeLists.txt
cmake_minimum_required(VERSION 3.10)
project(main)
# 设置C++标准
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# 查找 OpenCL 库
find_package(OpenCL REQUIRED)
# 查找 OpenCV 库
find_package(OpenCV REQUIRED)
# 设置目标架构为 aarch64(可选)
set(LIB_ARCH "aarch64")
# 指定 OpenCL 头文件的路径(如果 find_package 未能自动设置)
if(OpenCL_FOUND)
include_directories(${OpenCL_INCLUDE_DIRS})
message(STATUS "OpenCL include directories: ${OpenCL_INCLUDE_DIRS}")
message(STATUS "OpenCL libraries: ${OpenCL_LIBRARIES}")
else()
message(FATAL_ERROR "OpenCL not found!")
endif()
# 包含 OpenCV 的头文件路径
include_directories(${OpenCV_INCLUDE_DIRS})
# 添加可执行文件
add_executable(main
main.cpp
)
# 链接 OpenCL 和 OpenCV 库
target_link_libraries(main
${OpenCL_LIBRARIES}
${OpenCV_LIBS}
)
main.cpp
#define CL_HPP_TARGET_OPENCL_VERSION 220 // 指定使用 OpenCL 2.2 版本
#include <CL/opencl.hpp>
#include <iostream>
#include <fstream>
#include <vector>
// 读取OpenCL内核源代码
std::string readKernelSource(const char* filename) {
std::ifstream file(filename);
if(!file.is_open()){
throw std::runtime_error("cl文件打开失败!!!");
}
return std::string(std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>());
}
int main() {
// 获取OpenCL平台
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
if (platforms.empty()) {
std::cerr << "No OpenCL platforms found." << std::endl;
return -1;
}
// 选择第一个平台
cl::Platform platform = platforms[0];
// 获取GPU设备
std::vector<cl::Device> devices;
platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
if (devices.empty()) {
std::cerr << "No OpenCL devices found." << std::endl;
return -1;
}
// 选择第一个设备
cl::Device device = devices[0];
// 创建上下文和命令队列
cl::Context context(device);
cl::CommandQueue queue(context, device);
// 读取并编译OpenCL程序
std::string kernelSource = readKernelSource("helloworld.cl");
if(kernelSource.empty()){
std::cout << "cl程序为空!!!\n";
return -1;
}
//创建OpenCL程序对象,后面我们对program操作时就是对内核源文件进行操作
cl::Program program(context, kernelSource);
//.build的目的就是将.cl文件编译成对应设备可以运行的二进制文件
if (program.build({device}) != CL_SUCCESS) {
std::cerr << "Error building: " << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
return -1;
}
// 创建内核,将hello_world函数绑定到内核上,还是一个句柄,通过它来操作和执行内核
cl::Kernel kernel(program, "hello_world");
// 创建输出缓冲区
char output[13]; // "Hello World!\0" 字符串长度
cl::Buffer outputBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY, sizeof(output));
/*
CL_MEM_WRITE_ONLY :表示GPU的内存缓冲区GPU只能写
CL_MEM_HOST_READ_ONLY :表示GPU的内存混冲去内核只能读
*/
// 设置内核参数
kernel.setArg(0, outputBuffer);
// 执行内核
cl::NDRange global(1); // 只有一个工作项
queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, cl::NullRange);
// 从设备读取结果
queue.enqueueReadBuffer(outputBuffer, CL_TRUE, 0, sizeof(output), output);
// 输出结果
std::cout << "Output from OpenCL Kernel: " << output << std::endl;
return 0;
}
helloworld.cl
__kernel void hello_world(__global char* output){
output[0] = 'H';
output[1] = 'e';
output[2] = 'l';
output[3] = 'l';
output[4] = 'o';
output[5] = ',';
output[6] = 'W';
output[7] = 'o';
output[8] = 'r';
output[9] = 'l';
output[10] = 'd';
output[11] = '!';
output[12] = '\n';
}
4、编译运行:
在命令行执行如下命令:(注意目录结构,要在文件目录里执行,也可以自己创建build文件夹,再make,效果是一样的)
5、输出结果:
6、总结:
以上就是使用OpenCL来输出hello,world的完整流程,有了整体的概念后,我们就可以在编程的时候使用OpenCL来进行异构编程,程序的运行速度将会提升很多,特别数对于图像、视频的处理,本人用边缘检测算法分别使用GPU和CPU做了比较,使用OpenCL调用GPU完成工作的时间比使用CPU调用OpenCV完成的时间快10倍左右!!!