RK3588使用OpenCL编程(一)

使用OpenCL输出hello,world!

使用设备:orangepi5pro
系统:官方镜像ubuntu 22.04 LTS

1、OpenCL简介

OpenCL(Open Computing Language开放计算语言)是一种开放的、免版税的标准,用于超级计算机、云服务器、个人计算机、移动设备和嵌入式平台中各种加速器的跨平台并行编程。

2、linux系统下安装

在香橙派的官方手册中,手册说明支持OpenCL2.2,作者直接使用vscode使用ssh连接了开发板,使用如下命令安装OpenCL和OpenCV

sudo apt update
sudo apt install opencl-headers ocl-icd-opencl-dev
sudo apt install libopencv-dev  # 用于图像处理(在本程序中并未使用)

检查是头文件否安装成功

ls /usr/include/CL

显示如下:
在这里插入图片描述

检查OpenCL库是否存在

ls /usr/include/CL

显示如下:
在这里插入图片描述
至此,说明我们的OpenCL已经安装完成

3、输出hello,world代码

代码结构:
在这里插入图片描述

CMakeLists.txt

cmake_minimum_required(VERSION 3.10)

project(main)

# 设置C++标准
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

# 查找 OpenCL 库
find_package(OpenCL REQUIRED)

# 查找 OpenCV 库
find_package(OpenCV REQUIRED)

# 设置目标架构为 aarch64(可选)
set(LIB_ARCH "aarch64")

# 指定 OpenCL 头文件的路径(如果 find_package 未能自动设置)
if(OpenCL_FOUND)
    include_directories(${OpenCL_INCLUDE_DIRS})
    message(STATUS "OpenCL include directories: ${OpenCL_INCLUDE_DIRS}")
    message(STATUS "OpenCL libraries: ${OpenCL_LIBRARIES}")
else()
    message(FATAL_ERROR "OpenCL not found!")
endif()

# 包含 OpenCV 的头文件路径
include_directories(${OpenCV_INCLUDE_DIRS})

# 添加可执行文件
add_executable(main
    main.cpp
)

# 链接 OpenCL 和 OpenCV 库
target_link_libraries(main
    ${OpenCL_LIBRARIES}
    ${OpenCV_LIBS}
)

main.cpp

#define CL_HPP_TARGET_OPENCL_VERSION 220  // 指定使用 OpenCL 2.2 版本
#include <CL/opencl.hpp>
#include <iostream>
#include <fstream>
#include <vector>

// 读取OpenCL内核源代码
std::string readKernelSource(const char* filename) {
    std::ifstream file(filename);
    if(!file.is_open()){
        throw std::runtime_error("cl文件打开失败!!!");
    }
    return std::string(std::istreambuf_iterator<char>(file),
                       std::istreambuf_iterator<char>());
}

int main() {
    // 获取OpenCL平台
    std::vector<cl::Platform> platforms;
    cl::Platform::get(&platforms);
    if (platforms.empty()) {
        std::cerr << "No OpenCL platforms found." << std::endl;
        return -1;
    }

    // 选择第一个平台
    cl::Platform platform = platforms[0];

    // 获取GPU设备
    std::vector<cl::Device> devices;
    platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
    if (devices.empty()) {
        std::cerr << "No OpenCL devices found." << std::endl;
        return -1;
    }

    // 选择第一个设备
    cl::Device device = devices[0];

    // 创建上下文和命令队列
    cl::Context context(device);
    cl::CommandQueue queue(context, device);

    // 读取并编译OpenCL程序
    std::string kernelSource = readKernelSource("helloworld.cl");
    if(kernelSource.empty()){
        std::cout << "cl程序为空!!!\n";
        return -1;
    }
    
    //创建OpenCL程序对象,后面我们对program操作时就是对内核源文件进行操作
    cl::Program program(context, kernelSource);
    //.build的目的就是将.cl文件编译成对应设备可以运行的二进制文件
    if (program.build({device}) != CL_SUCCESS) {
        std::cerr << "Error building: " << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
        return -1;
    }

    // 创建内核,将hello_world函数绑定到内核上,还是一个句柄,通过它来操作和执行内核
    cl::Kernel kernel(program, "hello_world");

    // 创建输出缓冲区
    char output[13]; // "Hello World!\0" 字符串长度
    cl::Buffer outputBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY, sizeof(output));

    /*
    CL_MEM_WRITE_ONLY       :表示GPU的内存缓冲区GPU只能写
    CL_MEM_HOST_READ_ONLY   :表示GPU的内存混冲去内核只能读
    */

    // 设置内核参数
    kernel.setArg(0, outputBuffer);

    // 执行内核
    cl::NDRange global(1);  // 只有一个工作项
    queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, cl::NullRange);

    // 从设备读取结果
    queue.enqueueReadBuffer(outputBuffer, CL_TRUE, 0, sizeof(output), output);

    // 输出结果
    std::cout << "Output from OpenCL Kernel: " << output << std::endl;

    return 0;
}

helloworld.cl

__kernel void hello_world(__global char* output){
    output[0] = 'H';
    output[1] = 'e';
    output[2] = 'l';
    output[3] = 'l';
    output[4] = 'o';
    output[5] = ',';
    output[6] = 'W';
    output[7] = 'o';
    output[8] = 'r';
    output[9] = 'l';
    output[10] = 'd';
    output[11] = '!';
    output[12] = '\n';
}

4、编译运行:

在命令行执行如下命令:(注意目录结构,要在文件目录里执行,也可以自己创建build文件夹,再make,效果是一样的)
在这里插入图片描述
在这里插入图片描述

5、输出结果:

在这里插入图片描述

6、总结:

以上就是使用OpenCL来输出hello,world的完整流程,有了整体的概念后,我们就可以在编程的时候使用OpenCL来进行异构编程,程序的运行速度将会提升很多,特别数对于图像、视频的处理,本人用边缘检测算法分别使用GPU和CPU做了比较,使用OpenCL调用GPU完成工作的时间比使用CPU调用OpenCV完成的时间快10倍左右!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值