han通过将异构图转换为由元路径构造的齐次图来学习图表示学习。但是这些方法领域专家手动选择元路径,因此可能无法捕获每个问题所有有意义的关系。同样,元路径的选择也会显着影响性能。与这些方法不同的是GTN可以在异构图上运行并且转化为任务转换图,同时以端到端的方式学习转换图上节点的表示形式。
算法简述
算法名称:GTN(Graph Transformer Network),2019 NeurIPS
传统GNN处理静态同构图,但面对misspecified图和异构图时却无能为力。本文提出的GTN其要点主要有3个:
-
GTN可生成新的图结构,如识别出原图中无相连但实际有潜在用处的边。
-
Graph Transformer Layer基于边类型的软选择和组合,可以生成各种meta-paths。
-
GTN中meta-path自动生成且不依赖领域知识,它比许多预定义meta-path类算法效果好。
前置知识
GTN的输入不要求图结构预先确定。它基于若干候选邻接矩阵生成新的图结构(识别有效meta-path),进而执行卷积操作产出节点的embedding。
<