1、整数二分
整数二分只要能找到某个条件使得整个区间[l,r]分为一分为二,那么利用二分的特性,通过将区间不断缩小,最终达到二分终止l==r时,就能找的满足条件的区间的边界点,即图中所示的X。
如图所示,X右侧满足条件时,根据图中的分析,可以得出此时的二分模板代码如下:
bool check(int x) {/* ... */} // 检查x是否满足某种性质
int binaryR_search(int l,int r){
while(l<r){
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
}
如图所示,X左侧满足条件时,根据图中的分析,可以得出此时的二分模板代码如下:
bool check(int x) {/* ... */} // 检查x是否满足某种性质
int binaryL_search(int l,int r){
while(l<r){
int mid=l+r+1>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
}
但是X左侧满足条件时,值得我们注意的时,由于令l=mid,而c++代码中l+r/2是向下取整的,当区间内只剩l,r两个元素时,此时mid=l,而代码中恰好是满足条件执行,l=mid的代码逻辑,最终刷新的[l,r]的区间相比于上一次将没有发生变化。也就是说,区间并不会继续缩小,最终达不到l==r的二分终止条件,从而陷入死循环。
2、浮点数二分
浮点数二分则更加简单,不需要考虑整数二分的两种情况(因为整数二分左右两部分的边界点不相交),直接见代码如下:
bool check(double x) {/* ... */} // 检查x是否满足某种性质
double binary_search(double l, double r)
{
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}