YOLOv8分类模型训练

YOLOv8的分类模型不像目标检测和实例分割模型,它的训练不需要yaml文件,配置比较简单,只需要将数据集根目录作为训练参数即可。下面是具体步骤:

1、构建数据集

数据集目录结构

|—data_dir   (数据集根目录)

     |—train     (训练集目录)

         |—class1       (类别1)

         |—class2     (类别2)

          .......

     |—val     (验证集目录)

         |—class1       (类别1)

         |—class2     (类别2)

          .......

2、数据增强

如果数据集需要数据增强,则可以对图像进行亮度、噪声、旋转、高斯模糊等操作,但增强后的数据集结构需要与原始数据保持一致。如果不需要数据增强,可以直接进行训练。

3、训练代码

训练代码非常简单,只需要把数据集根目录作为参数即可。另外,需要注意使用预训练模型时需要指定后缀为“-cls.pt”。

from ultralytics import YOLO

if __name__ == '__main__':

    # 数据集所在的根目录
    data_path = r"D:\data_dir"

    print("执行分类训练")
    model = YOLO("weights/yolov8n-cls.pt")  # 加载分类模型

    # 训练模型
    results = model.train(data=data_path, epochs=100)

    # 评估模型
    metrics = model.val()  

4、训练后的标签说明

训练之后的模型中会存储各个类别的id,类别的id按照首字母顺序排序,例如:数据集中有三个分类car、human、dog,标签顺序则为{"0":"car", "1": "dog", "2": "human"}。

### 使用YOLOv8进行分类模型训练 #### 准备工作 为了使用YOLOv8进行分类模型训练,首先需要准备好合适的数据集。数据集应当被合理地划分为训练集、验证集和测试集。对于图像分类任务而言,每张图片应附有对应的标签文件,表明该图所属类别。 #### 安装依赖库 确保安装了必要的Python包来支持YOLOv8的操作环境。通常这涉及到安装`ultralytics`库以及其他可能所需的辅助工具或框架组件[^1]。 ```bash pip install ultralytics ``` #### 配置参数设置 在启动训练之前,需定义好一系列重要的超参数选项。这些参数可以通过命令行传递给训练脚本,具体如下: - `--imgsz`: 设置输入图片尺寸,默认情况下可能是640×640像素; - `--batch-size`: 批处理大小,决定了每次迭代中使用的样本数量; - `--epochs`: 总共要执行多少次完整的遍历整个数据集的过程; - `--data`: 指定用于描述数据分布情况的YAML配置文件路径; - `--weights`: 如果是从预训练权重开始,则提供相应的.pth或其他格式的权重文件位置;如果没有特别指明,则会随机初始化网络权重。 #### 开始训练过程 一旦完成了上述准备工作之后,就可以调用官方提供的API接口来进行实际的训练操作了。下面给出了一条典型的命令行指令作为例子说明如何发起一次基于YOLOv8架构下的分类器学习流程: ```python from ultralytics import YOLO model = YOLO('yolov8n-cls.pt') # 加载YOLOv8分类模型 results = model.train(data='path/to/dataset', epochs=100, imgsz=640) ``` 此段代码片段展示了怎样加载一个预先存在的YOLOv8分类版本(`yolov8n-cls`)并对其进行特定条件下的再训练活动。其中`'path/to/dataset'`应该替换为指向本地存储的实际数据集目录地址。 #### 后续评估与调整 完成初步训练后,建议对生成的结果进行全面分析,并依据反馈信息适时作出相应改进措施,比如微调某些关键性的超参设定或是增加额外的正则化手段等,从而进一步提升最终产出物的质量水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值