前言:对应分析法可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析实际也是“降维”方法的一种,它比较适合对分类变量进行研究。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
对应分析的实质就是将交叉表里面的频数数据作变换(通过降维的方法)以后,利用图示化(散点图)的方式,从而将抽象的交叉表信息形象化,直观地解释变量的不同类别之间的联系,适合于多分类型变量的研究。
假设检验:
H0:A与B相互独立
H1:A与B不独立
(边际概率乘积等于联合概率)
构造统计量:
标准:已验证为皮尔逊的卡方分布
推广:为两个分布间是否相同,构造一个度量(拟合优度检验)
应用:科尔夫诺弗检验统计量(L∞),C-M检验统计量