文本数据分析——情感分析

本文详细介绍了如何利用Python的NLTK库进行文本处理,包括分词、词性标注、停用词去除、词形还原与提取、词频统计、文本分类,以及朴素贝叶斯算法的应用。涵盖了从基础到进阶的内容,适合NLP初学者和开发者深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

python文本分析工具NLTK

在python环境下运行以下代码,选择需要的语料库进行下载

 典型的文本与处理流程为

分词

​编辑 结巴分词(中文分词)

 特殊字符可以使用正则表达式进行分词

 词形问题、词形归一化

 词性标注和停用词

使用词频表示文本特征来度量文本间的相似性

 取出词频统计的最多的n个单词​编辑

 文本分类​编辑

 朴素贝叶斯算


python文本分析工具NLTK

NLP(自然语言处理)领域种最常用的一个python库,NLP是将自然语言(文本)转化为计算机程序更容易理解的形式,

在python环境下运行以下代码,选择需要的语料库进行下载

nltk就像是一个骨架,我们要让他运动起来,就必须有血有肉,这些血肉就是下面的这些模型等

import nltk
nltk.download()

弹出以下窗口,Collection中有各种的教程、例子等,corpora为各种语料库 ,全部下载完约1-2G左右,models为各种模型,All Packages为前面的所有包

下面是brown(布朗)库的调用和基本情况查看

from nltk.corpus import brown
print(brown.cotegories())#查看语料库包含的类别
print('共有{}个句子'.format(len(brown.sents())))
print('共有{}个单词'.format(len(brown.words())))

 典型的文本与处理流程为

  1. 对原始数据进行分词
  2. 词形归一化
  3. 词性标注
  4. 去除停用词
  5. 得到处理好的单词列表

分词

默认使用punkt分词模型,在上述方法中下载此模型才可使用

nltk.word_tokenize('需要分词的句子')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱打羽毛球的小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值