数据包络分析(DEA)深度解析:评估决策单元的综合效率


数据包络分析(DEA)是一种衡量生产效率的非参数方法,它评估多个输入和输出的生产过程,尤其适用于多输入多输出的复杂系统。本文将详细探讨DEA的分析步骤,包括关键的计算公式,并展示如何应用DEA进行效率评估。

DEA分析步骤与计算公式

步骤1:确定决策单元(DMU)和变量

选择要评估的决策单元(如医院、银行分行、学校等),并确定输入(如成本、劳动力、资本)和输出(如服务量、收益、满意度)。

步骤2:数据收集与标准化

收集关于每个DMU的输入和输出数据,并进行标准化处理,以消除不同量纲的影响。标准化公式如下:

x i j ∗ = x i j max ⁡ ( x i ) for inputs x_{ij}^{*} = \frac{x_{ij}}{\max(x_{i})} \quad \text{for inputs} xij=max(xi)xijfor inputs
y i j ∗ = y i j max ⁡ ( y i ) for outputs y_{ij}^{*} = \frac{y_{ij}}{\max(y_{i})} \quad \text{for outputs} yij=max(yi)yijfor outputs

其中, x i j x_{ij} xij是第 j j j 个DMU的第 i i i 个输入值, y i j y_{ij} yij是第 j j j 个DMU的第 i i i 个输出值。

步骤3:选择合适的DEA模型

常见的DEA模型包括CCR(Charnes, Cooper and Rhodes)模型和BCC(Banker, Charnes and Cooper)模型。CCR模型假设规模报酬不变,而BCC模型假设规模报酬可变。

步骤4:构建DEA模型

以CCR模型为例,DEA问题可以表示为以下线性规划问题:

Maximize θ = ∑ j = 1 J λ j y i j \text{Maximize} \quad \theta = \sum_{j=1}^{J} \lambda_j y_{ij} Maximizeθ=j=1Jλ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零 度°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值