文章目录
数据包络分析(DEA)是一种衡量生产效率的非参数方法,它评估多个输入和输出的生产过程,尤其适用于多输入多输出的复杂系统。本文将详细探讨DEA的分析步骤,包括关键的计算公式,并展示如何应用DEA进行效率评估。
DEA分析步骤与计算公式
步骤1:确定决策单元(DMU)和变量
选择要评估的决策单元(如医院、银行分行、学校等),并确定输入(如成本、劳动力、资本)和输出(如服务量、收益、满意度)。
步骤2:数据收集与标准化
收集关于每个DMU的输入和输出数据,并进行标准化处理,以消除不同量纲的影响。标准化公式如下:
x i j ∗ = x i j max ( x i ) for inputs x_{ij}^{*} = \frac{x_{ij}}{\max(x_{i})} \quad \text{for inputs} xij∗=max(xi)xijfor inputs
y i j ∗ = y i j max ( y i ) for outputs y_{ij}^{*} = \frac{y_{ij}}{\max(y_{i})} \quad \text{for outputs} yij∗=max(yi)yijfor outputs
其中, x i j x_{ij} xij是第 j j j 个DMU的第 i i i 个输入值, y i j y_{ij} yij是第 j j j 个DMU的第 i i i 个输出值。
步骤3:选择合适的DEA模型
常见的DEA模型包括CCR(Charnes, Cooper and Rhodes)模型和BCC(Banker, Charnes and Cooper)模型。CCR模型假设规模报酬不变,而BCC模型假设规模报酬可变。
步骤4:构建DEA模型
以CCR模型为例,DEA问题可以表示为以下线性规划问题:
Maximize θ = ∑ j = 1 J λ j y i j \text{Maximize} \quad \theta = \sum_{j=1}^{J} \lambda_j y_{ij} Maximizeθ=∑j=1Jλ