NLTK
(Natural Language Toolkit)是一个领先的平台,用于构建处理人类语言数据的Python程序。它提供了易于使用的接口,用于超过50个语料库和词汇资源,如WordNet,以及一套文本处理库,用于分类、标记化、词干提取、标记、解析和语义推理。
NLTK的主要功能
- 语料库访问:提供多种语料库,如布朗语料库、Gutenberg语料库等。
- 文本预处理:包括文本清洗、标准化、分词等。
- 分词:将文本分割成单独的词语或符号。
- 词性标注:为文本中的每个词赋予相应的词性标签。
- 命名实体识别:从文本中识别特定类型的命名实体,如人名、地名等。
- 文本分类:自动将文本归类到特定类别。
- 语法分析:将句子解析成语法树。
常用NLTK函数及其参数
nltk.download()
下载所需的语料库和资源。
packages
: 要下载的资源列表,如'punkt'
、'averaged_perceptron_tagger'
等。
nltk.word_tokenize(text, language='english')
分词,将文本分割成单独的词语。
text
: 要分词的文本字符串。language
: 使用的语言,默认为英语。
nltk.pos_tag(tokens, tag_set=None)
词性标注,为分词后的每个词赋予词性标签。
tokens
: 分词后的词列表。tag_set
: 使用的词性标记集,默认为None。
nltk.ne_chunk(tagged_tokens, binary=False)
命名实体识别,识别文本中的命名实体。
tagged_tokens
: 已词性标注的词列表。binary
: 是否返回二进制树。
nltk.classify.apply_features(features, training, search=None)
应用特征提取,用于文本分类。
features
: 特征提取函数。training
: 用于训练的特征集。search
: 用