💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于UKF和AUKF的电力系统负荷存在突变时的三相状态估计研究是一种利用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)和改进的无迹卡尔曼滤波(Augmented Unscented Kalman Filter, AUKF)方法来处理电力系统负荷突变情况下的状态估计问题。
在电力系统中,负荷突变是指电力系统的负荷发生突然变化,可能会对电压、频率等三相状态变量产生影响。因此,在负荷突变情况下,对三相状态进行实时估计和预测非常重要,来保证电力系统的稳定运行和负荷管理。
UKF是一种无迹卡尔曼滤波算法,可以应对非线性系统和非高斯噪声的情况。它通过选择一组特定的采样点(无迹)来对高斯分布进行逼近,提高了滤波算法的准确性和稳定性。
AUKF是对UKF的改进,通过引入状态扩展和增广噪声向量,提高了滤波算法对系统噪声和突变的鲁棒性。对于电力系统负荷突变的情况,AUKF能够准确估计负荷突变后的状态变量,并尽可能减小估计误差。
一、UKF与AUKF的基本原理及电力系统适用性
1. UKF的核心原理
UKF通过 无迹变换(UT) 处理非线性系统,避免传统EKF的线性化误差。其核心步骤包括:
- Sigma点采样:根据状态均值和协方差生成一组对称采样点(Sigma点),精确捕捉状态分布的高阶矩 。
- 非线性传播:将Sigma点通过状态方程传播,计算预测均值和协方差 。
- 加权更新:结合观测方程,通过加权平均更新状态估计 。
优势:无需计算Jacobian矩阵,对不可导函数有效;估计精度达泰勒展开4阶,计算复杂度为O(n³) 。
2. AUKF的改进机制
AUKF在UKF基础上引入自适应参数调整,解决噪声统计特性未知或时变问题:
- 噪声协方差在线估计:采用改进的Sage-Husa估值器,实时更新过程噪声协方差 QQ 和量测噪声协方差 RR 。
- 自适应因子调节:通过新息(残差)协方差匹配,动态调整预测权重(如渐消因子 αkαk),抑制模型失配导致的发散 。
- 多因子融合优化:结合遗忘因子平滑、多参数自适应策略,提升对突变场景的敏感性 。
3. 在电力系统的适用性
- 非线性处理优势:电力系统状态方程(如潮流方程)高度非线性,UKF/AUKF避免EKF的线性化误差 。
- 动态跟踪能力:适用于负荷波动、分布式电源接入等动态场景 。
二、负荷突变对状态估计的影响机理
1. 突变场景的挑战
- 状态预测偏差:传统EKF在负荷突变时因线性化误差导致预测失效,电压幅值/相角估计偏离真值达10%以上 。
- 噪声统计失配:突变时过程噪声协方差 QQ 显著增大,固定参数的UKF易发散 。
- 量测数据异常:突变伴随不良数据(如SCADA通信延迟),进一步降低估计鲁棒性 。
2. 典型案例分析
- 节点负荷突增:IEEE 33节点系统中,节点6负荷瞬时增加20倍(0.0046 → 0.092 p.u.),EKF估计电压幅值误差达8%,而AUKF仅2% 。
- 虚假数据注入(FDIA) :负荷突变时,传统UKF的FDIA检测误报率高达35%,AUKF通过自适应噪声抑制降至5% 。
三、三相状态估计的数学建模方法
1. 状态变量选取
- 核心变量:节点三相电压幅值 (Va,Vb,Vc)(Va,Vb,Vc) 和相角 (θa,θb,θc)(θa,θb,θc) 。
- 扩展变量:发电机内电势、线路功率(考虑三相不平衡) 。
2. 状态方程与量测方程
-
状态方程:基于电力系统动态微分方程,描述状态变量随时间演化:
其中 w 为过程噪声 。
-
量测方程:结合WAMS(PMU)和SCADA混合量测:
PMU提供高精度同步相量(标准差0.002 rad),SCADA提供功率量测(标准差0.02) 。
3. 三相不平衡建模
- 虚拟参考母线法:固定三相相角差为120°,解决配电网三相电压不平衡导致的雅可比矩阵奇异问题 。
- 区间状态估计:针对分布式电源波动,以区间形式表示状态变量 x∈[x‾,x‾]x∈[x,x],增强鲁棒性 。
四、UKF与AUKF在负荷突变场景的性能对比
1. 精度对比
场景 | 算法 | 电压幅值误差(%) | 相角误差(rad) |
---|---|---|---|
负荷突变(IEEE 33) | UKF | 5.2 | 0.015 |
AUKF | 1.8 | 0.005 | |
虚假数据注入 | UKF | 6.7(误报率35%) | 0.021 |
AUKF | 2.3(误报率5%) | 0.008 | |
数据来源 |
2. 鲁棒性优势
- 抗干扰能力:AUKF在负荷突变时通过自适应因子修正预测协方差,均方根误差(RMSE)降低25–27% 。
- 收敛速度:UKF需15–20步收敛,AUKF仅需5–8步(IEEE 118节点测试) 。
3. 典型应用案例
- 配电网状态估计:AUKF在三相不平衡配电网中,纬度/经度/高度RMSE分别降低27%、27%、25% 。
- 锂电池SOC估计:在动态应力测试(DST)工况下,AUKF的MAE(0.0358%)仅为UKF(0.0699%)的一半 。
五、优化方向与未来研究建议
1. 算法层面优化
- 协方差矩阵正定性保障:引入奇异值分解(SVD)或平方根UKF(SRUKF),避免数值计算导致协方差非正定 。
- 多源数据融合:结合超短期负荷预测生成伪量测,补偿SCADA低采样率缺陷 。
2. 工程应用建议
- 混合量测架构:WAMS(PMU)与SCADA协同,PMU量测优先用于关键节点(如负荷中心) 。
- 突变检测机制:标准化新息序列 vkvk 实时监测,触发AUKF参数重调 。
3. 未来研究方向
- 深度学习辅助:脉冲神经网络(SNN)生成伪量测误差模型,提升缺数据场景的估计精度 。
- 交直流混合系统:拓展至含直流电源的三相状态估计,适应新能源高渗透场景 。
附录:Matlab实现关键代码逻辑(基于)
% 1. 状态初始化
x_est = [V_a, V_b, V_c, θ_a, θ_b, θ_c]'; % 初始状态向量
P = eye(6); % 初始协方差矩阵
% 2. AUKF自适应因子计算(负荷突变检测)
alpha_k = trace(v_k * v_k') / trace(P); % v_k为新息向量
if alpha_k > threshold
Q = Q * alpha_k; % 动态放大过程噪声协方差
end
% 3. Sigma点生成与传播
[sigma_pts, weights] = ut_transform(x_est, P);
for i = 1:size(sigma_pts, 2)
sigma_pred(:,i) = f_nonlinear(sigma_pts(:,i)); % 状态方程传播
end
% 4. 状态更新
z_pred = h_measure(sigma_pred); % 量测方程预测
K = P_xz * inv(P_zz); % 卡尔曼增益
x_est = x_pred + K * (z_actual - z_pred); % 状态修正
结语:UKF与AUKF为电力系统负荷突变场景提供了高精度、强鲁棒性的状态估计方案。未来需进一步融合多源数据与智能算法,推动其在智能电网动态监控中的落地应用。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王萍,弓清瑞,程泽等.基于AUKF的锂离子电池SOC估计方法[J].汽车工程,2022,44(07):1080-1087.DOI:10.19562/j.chinasae.qcgc.2022.07.014.
[2]巫春玲,程琰清,徐先峰等.基于蒙特卡洛和SH-AUKF算法的锂电池SOC估计[J].电气工程学报,2022,17(03):66-75.