OSPF的防环机制


OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和域间防环。

域间防环

  • OSPF的星型拓扑划分规则实际上就是一种防环手段。OSPF要求所有的非0区域必须与骨干区域直接相连,区域间路由需经由骨干区域中转。OSPF要求所有的非0区域必须与骨干区域直接相连, 区域间( Inter- - Area Route )路由需经由骨干区域中转。这个要求使得区域间的路由传递不能发生在两个非0的区域之间,这在很大程度上规避了区域间路由环路的发生,也使得OSPF的区域架构在逻辑上形成了一个类似星型的拓扑,如下图所示。
    在这里插入图片描述

  • ABR从非骨干区域收到的Type-3 LSA不能用于区域间路由的计算。当一台 ABR 在非 Area0 的区域中收到 Type- - 3 LSA 时,虽然它会将其装载进 LSDB ,但是该路由器不会使用这些 Type- - 3 LSA 进行路由计算,当然它更不会将这些 Type- - 3 LSA 再注入回Area0 中。
    在这里插入图片描述

  • 区域之间存在水平分割机制,从某个区域学到的路由信息不会再通告到这个区域,这和距离适量协议的水平分割相似,区域水平分割可以概括为:从此区域出,不进此区域。
    在这里插入图片描述

域内防环

OSPF基于一类二类LSA的洪泛收集区域内的拓扑信息,将这些拓扑信息转化为有向图,再用SPF算法将有向图转化为最短路径树,而树形结构是无环的,OSPF最后依据树形结构将路由加载到路由表中。

有向图转化

一类LSA描述了某个设备的接口信息,二类LSA只是一类LSA对MA网络的补充,通过查看一二类LSA可以画出单区域的有向图。

有向图的画法

  • 一类LSA中有四种接口类型,这里我们不考虑virtual类型
### OSPF LSA 防止环路的工作机制及实现细节 OSPF(Open Shortest Path First)是一种链路状态路由协议,其设计目标之一就是通过多种机制防止路由环路的发生。以下是关于OSPF LSA防止环路的具体工作机制及其实现细节: #### 1. **基于 SPF 算法的最短路径计算** OSPF 使用 Dijkstra 的 SPF(Shortest Path First)算法来构建拓扑数据库并计算到达各个目的地的最佳路径。每台路由器都会独立执行此算法,并根据本地维护的 LSDB(Link State Database),生成一棵以自己为根节点的最短路径树[^3]。由于所有路由器共享相同的链路状态信息,因此能够确保全网的一致性和无环性。 #### 2. **区域划分与层次化结构** 为了进一步减少潜在的环路风险以及提高可扩展性,OSPF 支持将网络划分为多个逻辑上的子集——即不同的区域(Area)。其中 Area 0 是骨干区域,其他非零号区域必须直接或者间接连接至它。这种分层架构有助于限制某些类型的 LSA 扩散范围,比如 Type-5 和 Type-7 LSA 只能在特定条件下被转换或传播[^1]。 #### 3. **特殊区域处理 (NSSA, Stub)** 对于一些特殊的场景如 NSSA(Not-so-stubby area),虽然允许引入外部路由但不允许泛洪标准形式的 AS 外部通告(Type-5 LSA)。取而代之的是使用默认路由或其他替代方案;同时还可以利用 route-tag 命令标记这些来自 BGP 或者 IGP 的外部导入项以便于识别和过滤重复项目,进而有效规避可能引发的循环依赖问题[^4]。 #### 4. **LSAck确认机制** 除了上述高级别的预防措施外,在实际操作层面还存在低延迟反馈回路用于快速检测错误配置等情况下的异常状况。每当一台设备接收到一个新的 LSA 更新消息之后便会立即发送相应的 ACKnowledgement 数据包给源端告知已成功接收该更新内容。如果某段时间内未能获得预期回应,则认为可能存在连通性障碍或者其他故障情形需重新尝试传输直至恢复正常为止. ```python # 示例 Python 实现简单的 SPF 计算过程模拟 from collections import defaultdict def spf_algorithm(graph, start_node): distances = {node: float('infinity') for node in graph} previous_nodes = {} distances[start_node] = 0 unvisited_queue = [(distances[node], node) for node in graph] heapq.heapify(unvisited_queue) while unvisited_queue: current_distance, current_vertex = heapq.heappop(unvisited_queue) if current_distance == float('infinity'): break for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance previous_nodes[neighbor] = current_vertex heapq.heappush(unvisited_queue,(distance, neighbor)) return distances, previous_nodes ``` 以上代码片段展示了如何用Python语言编写一个基础版本的Dijkstra算法函数`spf_algorithm()`来进行单源最短路径求解演示。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值