基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

一、方法原理与技术框架

1. 概率距离削减法(PDR)

2. 蒙特卡洛削减法(MCR)

二、对比分析与协同作用

1. PDR与MCR的对比

2. 协同应用策略

三、典型应用案例

1. PDR应用案例

2. MCR应用案例

四、未来研究方向

五、结论

📚2 运行结果

2.1 风电场景削减

 2.2 光伏场景削减

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

  以风电和光伏为代表的可再生能源出力具有随机性、间歇性、波动性等特点,在未来高比例可再生能源电力系统中,其大规模并网将给电网的安全、稳定运行带来挑战。为了研究高比例可再生能源背景下电力系统规划、运行、调度等优化问题,首先需要精准刻画风电、光伏出力的随机性与波动性特征,并且解决大规模时序数据对优化程序所造成时间复杂度较高的问题,因此需要对风电、光伏出力场景进行削减以达到精简数据、减少计算量的目的。风电、光伏出力随着时间的变化呈现一定的季节或日周期性·。因此,可以对风、光出力进行场景分析,将出力的不确定性转化为确定性场景,为后续电力系统规划、运行、调度等优化问题提供数据基础。
目前场景分析方法有三类∶时序模拟法、典型日法与场景聚类法。时序模拟法如文献采用蒙特卡洛法,考虑风电处理特性,模拟了全年的风电、负荷时序场景。典型日法将某一日的出力特性作为典型场景,文献以全年负荷峰谷差最大的一天作为典型日用于含风电全年电力平衡计算,显然不能体现风电的出力特性。场景聚类法通过将具有一定相似度的曲线聚为一类,例如文献采用k-means对全年风电、光伏、负荷数据进行聚类用于电力系统中长期规划。目前较为常用的是场景聚类法,因其结果能够准确体现场景特征,且计算效率较高。

一、方法原理与技术框架

1. 概率距离削减法(PDR)

基本原理
PDR通过量化场景间的概率分布差异和几何距离,筛选具有代表性的场景集。其核心步骤包括:

  1. 初始场景生成:利用蒙特卡洛模拟或拉丁超立方抽样生成大规模初始场景集。
  2. 概率密度估计:采用核密度估计(KDE)或参数化方法(如正态分布、Weibull分布)计算每个场景的概率。
  3. 距离计算:定义场景间的距离度量,常用方法包括:
    • 欧式距离:衡量时间序列数据的几何差异。
    • Wasserstein距离(EMD) :反映概率分布形状差异,对离群值鲁棒。
    • Kullback-Leibler散度(KL散度) :衡量信息损失,但非对称性可能限制其应用。
  4. 场景选择与合并:通过聚类或迭代优化(如快速前代消除法)合并相似场景,保留关键场景并更新概率权重。

算法流程示例

1. 初始化场景集S和保留集R;
2. 计算所有场景对的几何距离矩阵D;
3. 找到距离最小的场景对(i,j);
4. 合并i和j为新场景,权重为两者之和;
5. 更新S和R,重复直到满足削减目标。

应用场景

  • 短期预测:利用历史数据生成场景,通过PDR削减冗余。
  • 复杂系统优化:如含碳捕集的综合能源系统,削减至4-5个典型场景以降低计算复杂度。

2. 蒙特卡洛削减法(MCR)

基本原理
MCR基于随机采样策略从大规模场景集中抽取代表性子集,核心步骤包括:

  1. 初始采样:生成服从风光出力概率分布(如正态分布、Beta分布)的随机场景。
  2. 重要性采样:根据场景权重(如概率密度或对系统影响)调整抽样概率。
  3. 评估与迭代:通过均方根误差(RMSE)或平均绝对误差(MAE)评估削减效果,优化采样策略。

算法优势

  • 高效处理高维数据:适用于长期规划中气象数据生成的复杂场景。
  • 灵活性:支持均匀采样、重要性采样等多种策略。

应用案例

  • 风光储一体化系统:通过MCR生成1000个初始场景,再结合K-means聚类缩减至5个典型场景。
  • 微电网经济调度:对比同步回代、聚类法后,发现MCR在表征波动性上更具优势。

二、对比分析与协同作用

1. PDR与MCR的对比
指标概率距离削减法(PDR)蒙特卡洛削减法(MCR)
计算复杂度高(需全场景距离计算)低(依赖随机采样)
精度高(保留分布特征)中等(受采样策略影响)
适用场景规模中小规模(<1000场景)大规模(>1000场景)
鲁棒性对离群值敏感随机性可能导致结果不稳定
2. 协同应用策略
  • 两阶段削减:先用PDR初步缩减场景规模,再通过MCR优化采样效率。
  • 混合算法:结合聚类法(如K-means)与MCR,提升典型场景的覆盖能力。
  • 实际案例:在零碳园区项目中,先用MCR生成场景,再通过PDR削减至4个典型场景以优化运行成本。

三、典型应用案例

1. PDR应用案例
  • 案例1:在含电转氢设备的综合能源系统中,生成1000个初始场景后,通过PDR削减至5个典型场景,概率分别为24%、10%、24%、34%、8%,有效支撑随机优化调度。
  • 案例2:农村化工系统中,采用拉丁超立方抽样生成场景,通过同步回代法削减至5个场景,降低风光出力不确定性对系统灵活性的影响。
2. MCR应用案例
  • 案例1:微电网经济调度中,生成100个风电/光伏场景,结合同步回代法削减后,采用粒子群算法优化调度,验证了MCR在波动性处理中的有效性。
  • 案例2:虚拟电厂多时间尺度优化中,引入曼哈顿概率距离与MCR结合,减少日前出力偏差并抑制功率波动。

四、未来研究方向

  1. 改进概率距离度量:开发融合电力系统物理特性的距离指标(如基于潮流灵敏度的度量)。
  2. 智能采样策略:利用机器学习(如强化学习)优化MCR的采样过程。
  3. 并行计算加速:通过GPU并行化处理大规模场景的距离计算与合并。
  4. 鲁棒性增强:考虑风光预测误差的分布不确定性,设计自适应削减算法。

五、结论

概率距离削减法和蒙特卡洛削减法在风光场景不确定性削减中各具优势:PDR在精度与效率间取得平衡,适合中小规模场景;MCR则擅长大规模复杂场景的高效处理。两者的协同应用(如两阶段削减)可进一步提升系统优化效果。未来需结合智能算法与并行计算,推动其在电力系统调度中的实际应用。

📚2 运行结果

2.1 风电场景削减

 

 2.2 光伏场景削减

 

 展望与思考:

随着能源需求增长与化石燃料资源枯竭的矛盾日益突出,大规模发展低碳、清洁的新能源是我国实现能源转型和应对全球气候变化的重要措施之一。但风、光固有的不确定性也对电力系统稳定运行提出了巨大挑战,由于电力系统消纳能力不足造成了严重的弃风、弃光。因此,研究大规模新能源接入情况下的电力系统电源规划方法具有重要意义。为从根本上解决该问题,需要在规划阶段同时考虑风光不确定性和电力系统运行条件。一方面要准确描述风光真实分布特性,另一方面要提供多能源电力系统电源规划方案并能高效准确模拟各电源并网运行情况。


利用可再生能源发电的分布式电源由于具污染﹑高效率、节约输变电投资等优势,近年来
快速发展。但分布式电源容量小、数量大、分散等特点,也导致单机接入电网成本高﹑管理困难。微网2和是拟电)足口月U用T我 由厂( virtual并网问题的两种王安 .月。出抗方式和能源power plant ,V.PP)龙l多个小电源打包,输出管理整合各类分布式电源,将多个小电源打包,
车相对稳定的较大出力。与微网相比,虚拟电偏重从上到下的管理与控制﹐从对外呈现的功有艺点效果看,更类似传统电厂。为了保证虚拟电厂运行,虚拟电厂可以签V尖以门元协议。实际上,可再生能源发电一方面具有出力不确定性,一方面有对可再生能源发电倾斜的调度规则,甚至可再生能源发电吸纳率也是各电网运行绩效的重要指标﹐因此配电公司和虚拟电厂之间可以通过有效的合作,例如合理安排水电出力时段、弃风量等,降低不确定性对并网的影响,减少配电公司购电成本,增加虚拟电厂收入,引导可再生能源发电提高预测精度。因此,重点分析虚拟电厂与配电公司的合作可行性,在以场景分析法处理风光出力不确定性的基础上,构建了虚拟电厂单独调度、多虚拟电厂协同调度以及虚拟电厂/配电公司联合优化三种模型,基于合作博弈理论定量分析虚拟电厂/配电公司合作空间和利益分配方案。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]白斌,韩明亮,林江,孙伟卿.含风电和光伏的可再生能源场景削减方法[J].电力系统保护与控制,2021,49(15):141-149.DOI:10.19783/j.cnki.pspc.201224.

[2]董文略,王群,杨莉.含风光水的虚拟电厂与配电公司协调调度模型[J].电力系统自动化,2015,39(09):75-81+207.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值