搭建一个基于CNN数字识别项目的环境(Pycharm+Pytorch+Opencv)

Anaconda 和 Pycharm 请读者自行下载(官网下载符合自己电脑的版本即可)

一.整体步骤

下载好后,我们需要用conda创建一个python的虚拟环境,然后把Pytorch和Opencv的包安装到这个虚拟环境下。最后在Pycharm选择这个解释器。

二.创建虚拟环境

  1. 在开始菜单里找到 Anaconda Prompt

  1. 输入以下命令

PS:

①Pytorch_Opencv是虚拟环境的名字,可以自己命名。

②创建的虚拟环境的python版本要和自己电脑上的python版本相同。(可以在cmd中查看)

在cmd中查看此电脑python版本:

然后继续上面的步骤,在输入命令后,在此弹出的对话框中输入y

然后等待一小会儿

3.激活创建的虚拟环境

还是在Anconda Prompt下,输入activate Pytorch_Opencv

前面的括号从base变为你自己的虚拟环境名字,说明创建并激活虚拟环境成功了。

三.安装Pytorch(本人安装的是CPU版本的)

  1. 安装Pytorch

在Pytorch官网选择自己适合自己电脑的版本

复制自动生成的pip命令,后面加上-i https://pypyi.tuna.tsinghua.edu.cn/simple/ (清华镜像)

  1. 检查Pytorch是否安装成功

①在Pytorch_Opencv环境下(这里注意,是要先激活环境) 输入python

然后 import torch

出现>>>说明Pytorch安装成功

四.安装Opencv

  1. 安装Opencv

还是在Anaconda Prompt下,输入

在弹出的对话框中输入y

等一小会儿

  1. 检查opencv是否安装成功

还是在Pytorch_Opencv环境下输入python

然后import cv2

出现>>>说明安装成功

五.在Pycharm中打开此项目

项目源码出处:https://github.com/Hurri-cane/Hand_wrtten/tree/master

然后打开settings

打开Python Interpreter

点击右侧的Add Interpreter -> Add Local Interpreter

点击Interpreter右侧的...

选择路径:Anaconda文件夹(根据自己安装地址打开)-> envs->Pytorch_Opencv ->Tools->python.exe

点击ok

这时,你已经选择了你创建的虚拟环境作为解释器,解释器中的包含的包都被列出来了

点击 Apply

点击+

搜索matplotlib 点击Install Package

等待一会即可安装成功

六.运行项目

(需要把代码中的数据集地址改成自己保存的位置)

好的,请问您使用的是哪种算法或模型来进行数字识别呢?这样我可以针对具体的算法或模型给您提供相应的代码实现。如果您使用的是TensorFlow进行数字识别,可以参考以下代码实现: ``` import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt # 加载MNIST数据集 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 图片像素值归一化 train_images, test_images = train_images / 255.0, test_images / 255.0 # 构建卷积神经网络模型 model = models.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(10) ]) # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 history = model.fit(train_images.reshape(-1, 28, 28, 1), train_labels, epochs=5, validation_data=(test_images.reshape(-1, 28, 28, 1), test_labels)) # 测试模型 test_loss, test_acc = model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels, verbose=2) print("Test accuracy:", test_acc) # 预测结果 predictions = model.predict(test_images.reshape(-1, 28, 28, 1)) plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(test_images[i], cmap=plt.cm.binary) predicted_label = tf.argmax(predictions[i]) true_label = test_labels[i] if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} ({})".format(predicted_label, true_label), color=color) plt.show() ``` 这段代码实现了一个简单的卷积神经网络模型,对MNIST数据集进行训练和测试,并对测试集的前25张图片进行预测结果的可视化展示。您可以根据具体的要求进行修改和补充。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值