
机器学习
文章平均质量分 97
欢迎来到机器学习专栏!本专栏聚焦机器学习前沿知识与实用技巧。从基础算法原理如决策树、神经网络详细剖析,到实战案例分享,涵盖图像识别、自然语言处理等领域。深入浅出的讲解,助你轻松掌握复杂概念。无论是初学者入门打基础,还是进阶者深入研究,这里都有丰富且有价值的内容,陪你在机器学习世界不断探索前行。
夜松云
云云我啊,最喜欢用CSDN了
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
从对数变换到深度框架:逻辑回归与交叉熵的数学原理及PyTorch实战
本文系统解析逻辑回归的理论基础与工程实现,从数学层面推导对数变换简化连乘计算,并阐明交叉熵作为损失函数的理论依据及其与极大似然估计的关系。针对二分类任务,结合Sigmoid激活函数设计前向传播与反向传播流程,通过Python代码实现参数迭代与决策边界绘制。进一步扩展至多分类场景,对比分析Softmax与二元交叉熵的适配性。最后基于PyTorch框架完成逻辑回归模型的端到端实现,涵盖数据预处理、模型定义、损失函数选择及训练过程可视化,验证理论的有效性并展示深度学习工具的高效性。原创 2025-04-24 16:23:24 · 1309 阅读 · 0 评论 -
深度学习激活函数与损失函数全解析:从Sigmoid到交叉熵的数学原理与实践应用
本文系统探讨了Sigmoid、tanh、ReLU、Leaky ReLU、PReLU、ELU等激活函数的数学公式、导数特性、优劣势及适用场景,并通过Python代码实现可视化分析。同时深入对比了极大似然估计与交叉熵损失函数的差异,阐述其在分类任务中的核心作用,揭示MSE在分类问题中的局限性及交叉熵的理论优势。原创 2025-04-23 19:44:18 · 605 阅读 · 0 评论 -
PaddlePaddle线性回归详解:从模型定义到加载,掌握深度学习基础
本文深入讲解了使用PaddlePaddle框架实现线性回归的完整流程,涵盖了模型定义(包括序列方式和类方式)、数据加载、模型保存(基础API和高级API)、模型加载(基础API和高级API)以及模型网络结构查看等关键步骤,旨在帮助读者全面掌握PaddlePaddle框架下线性回归的实现方法,并理解其背后的原理。同时,文章还涉及曲线拟合的理论与实践,以及多种激活函数的特性与应用,为读者构建扎实的深度学习基础。原创 2025-04-22 19:07:14 · 1304 阅读 · 0 评论 -
PyTorch与TensorFlow模型全方位解析:保存、加载与结构可视化
本文深入探讨了PyTorch和TensorFlow中模型管理的关键方面,包括模型的保存与加载以及网络结构的可视化。涵盖了PyTorch中模型和参数的保存与加载,以及使用多种工具进行模型结构分析。同时,详细介绍了TensorFlow中模型的定义方式、保存方法、加载流程以及模型结构的可视化技术,旨在帮助读者全面掌握两大深度学习框架的模型管理技巧。原创 2025-04-21 17:41:30 · 743 阅读 · 0 评论 -
PyTorch 线性回归详解:模型定义、保存、加载与网络结构
本文全面阐述了PyTorch框架下线性回归的实现过程,涵盖了模型定义的不同方式(如nn.Sequential、nn.ModuleList等)、模型保存方法(torch.save()),以及模型加载和网络结构查看。结合具体代码示例,旨在帮助读者深入理解并掌握PyTorch在解决线性回归问题中的应用。原创 2025-04-21 09:42:20 · 1077 阅读 · 0 评论 -
自求导实现线性回归与PyTorch张量详解
本文围绕自求导方法实现线性回归算法展开,详细介绍了算法的理论基础、参数初始化、损失函数设计、迭代过程及反向传播求导机制,并通过Python代码实现线性回归模型训练和可视化,直观呈现模型优化轨迹和损失变化。同时,文章深入讲解了PyTorch框架中的tensor概念,解析了tensor的存储结构、数据类型、步长和偏移,重点阐述了tensor连续性与非连续性的区别及其对计算效率的影响,并介绍了contiguous()方法用于解决非连续tensor问题,结合丰富代码示例,帮助读者理解并掌握PyTorch tenso原创 2025-04-17 17:27:06 · 1180 阅读 · 0 评论 -
线性回归的前向传播、反向传播与数学求解详解
本文从前向传播的代码实现出发,展示了如何利用线性模型对二维数据进行拟合及误差分析,接着深入讲解了反向传播中的学习率和梯度下降算法的理论基础及优化方法,结合Python代码动态演示了参数更新和损失函数的变化过程;最后,文章通过数学推导详细揭示了线性回归模型参数的计算公式,并用代码实现了数学解法的拟合过程,帮助读者全面掌握线性回归的基本原理、优化方法及编程实现。原创 2025-04-16 18:24:54 · 1253 阅读 · 0 评论 -
机器学习中的距离度量与优化方法:从曼哈顿距离到梯度下降
本文涵盖机器学习中的关键距离度量(曼哈顿、切比雪夫、余弦等)与优化技术,包括数学公式、Python代码实现及适用场景分析;详细讲解交叉验证方法(HoldOut与K折)的流程与意义;深入剖析前向传播、损失函数(如均方差)及梯度下降的数学基础(导数、偏导数、链式法则),并通过案例展示直线拟合中的误差计算与模型优化过程,为算法实践提供全面参考。原创 2025-04-15 17:26:08 · 1081 阅读 · 0 评论 -
KNN算法深度解析:从决策边界可视化到鸢尾花分类实战
本文系统讲解了KNN算法的决策边界形成机制、Scikit-learn实现细节及鸢尾花分类实战,涵盖K值选择对边界的影响、API参数解析、数据预处理(归一化/标准化)和数据集划分方法,通过代码示例和可视化分析帮助读者掌握KNN的核心应用技巧。原创 2025-04-14 18:37:29 · 1030 阅读 · 0 评论 -
从基础到实践:全面解析机器学习与KNN算法的核心原理与应用
本文涵盖机器学习的核心概念、KNN算法原理与实现、应用场景及未来挑战,结合代码示例和可视化分析,帮助读者掌握基础算法并理解其实际应用价值。原创 2025-04-14 08:52:29 · 942 阅读 · 0 评论