对抗平滑正则化项

对抗平滑正则化(Adversarial Smoothing Regularization,ASR),将对噪声数据的预测设置为对干净数据的预测的对手,因此将其命名为对抗平滑正则项。

符号设定:

p(\hat{y}|x,\theta ) 表示用θ参数化的模型输出。

\hat{y}=p(x,\theta )=p(x) 表示模型 p 对 x 的输出。

这衡量了噪声 \xi 对 p(\theta ) 造成的额外损失。可被看为当前模型在每个输入数据点 x 周围预测平滑度的负度量,其减小意味着噪声造成的损失减小。

数据设定

有标签数据 L={(x_{l}^{1},y_{l}^{1}),\cdots, (x_{l}^{\left | L \right |},y_{l}^{\left | L \right |})},样本数量为 \left | L \right |

无标签数据 U={(x_{u}^{1},y_{u}^{1}),\cdots, (x_{u}^{\left | U \right |},y_{u}^{\left | U \right |})},样本数量为 \left | U \right |

协同回归

在协同训练中,对无标签样本的预测置信度可以由分类器输出的后验概率判断。那些置信度最高的预测被设置为无标签样本的伪标签,以扩展另一个分类器的训练集,基于这样相互标记的过程,两个分类器可以利用无标签样本的额外信息进行性能提升。大量研究已经证实,使这两个回归器彼此不同有利于性能改进 [77],因此,Zhou 等人 [78] 使用不同的近邻数量和距离度量来扩大两个K近邻回归器之间的差异。

协同回归使用两个 K 近邻回归器进行无标签样本的相互标记过程,与分类任务相比,回
归场景中的主要挑战是如何选择置信预测作为无标签样本的伪标签。由于回归任务中没
有提供后验概率,协同回归通过分析预测值对有标签数据的影响来评估预测置信度。

三重回归算法流程

伪标签标注步骤前的流程:

  • 三个有标签数据集L_1,L_2,L_3,无标签数据集 U' (控制样本数量,影响循环)
  • 有数据集 L_i 、近邻数 k_i、距离度量 D_i  定义的K近邻算法 h_i

Repeat for T 轮,指有标签数据集中加入伪标签数据 T 次,每次至多加入两个;加入的同时,将对应数据从无标签数据集中删除,并将无标签数据集的样本数量通过随机采样补全。

方法出自《 面向零_少样本场景的弱监督学习方法、应用与实现_冯良骏 》第三章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值