MATLAB遗传工具箱使用如何输出每一次迭代的结果

本文介绍了如何在MATLAB中利用遗传算法工具箱存储和输出迭代过程中的适应度值。通过修改ga函数内部代码,特别是在gaunc函数的主循环中添加适应度值的存储步骤,可以实现对每代最优适应度值的记录。最终,不仅能得到最终的参数和最优适应度,还能获取整个优化过程的适应度变化情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遗传算法作为一种智能算法,在求解目标数值时经常使用,而在MATLAB中的遗传算法工具箱只实现了输出最终参数和最优的适应度值,对于迭代过程中的迭代适应度值未给出,经过不断实验找到了最简单的一种迭代结果存储与输出。

首先打开ga函数

[x,fval,exitflag,output,population,score]=ga(@fun,nvars,Aineq,bineq,Aeq,beq,lb,ub,[],[],options)

从后面往前找,找到Call appropriate single objective optimization solver(调用适当的单目标优化求解器),有很多函数,这个全部修改也可以,加入间断点,步进找到调用的求解器也可以。

以gaunc为例子,打开gaunc,找到 Run the main loop until some termination condition becomes true(运行主循环,直到某个终止条件变为真),这段话在68行左右,在while循环后加入输出的适应度值存储矩阵。

因为state是一个存储迭代次数、最优值等等的结构体,因此首先调用该结构体中的迭代次数。

gen=state.Generation    %迭代次数

然后调此时的最优值及写入存储矩阵。

bestfitness(gen,:)=state.Best(gen);   %写入

最后在gaunc输出bestfiitaness,以及在ga中输出,

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值