无约束非线性优化——最速下降法、牛顿法、共轭梯度法

本章对应的相关例题可见《无约束非线性优化算法例题-CSDN博客

目录

1 非线性优化问题的相关概念

1.1 迭代格与要求

1.2 线性搜索

2 最速下降法

2.1最速下降法计算步骤

2.2 最速下降法的总体收敛性

3 牛顿法

3.1 牛顿法计算步骤

3.2 阻尼牛顿法计算步骤

4 共轭梯度法

4.1 轭梯度法求解线性方程

4.2 FR共轭梯度法计算步骤


1 非线性优化问题的相关概念

1.1 迭代问题的结构与格式要求

首先,介绍迭代问题的一般性结构。设非线性规划问题

eq?min%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20f%28x%29

eq?s.t.%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20x%5Cin%20F

其中eq?F%5Csubseteq%20R%5E%7Bn%7D

  • eq?F%3D%20R%5E%7Bn%7D,即没有约束条件,在函数的整个定义域内寻找最优解,则问题为无约束优化问题
  • eq?F%3D%5Cleft%20%5C%7B%20h_%7Bi%7D%28x%29%3D0%2Ci%5Cin%20%5Cvarepsilon%20%3Bg_%7Bj%7D%5Cgeq%200%2Cj%5Cin%20%5Ceta%20%5Cright%20%5C%7D,即表示为约束条件为:eq?s.t.%5Cbegin%7Bmatrix%7D%20%5C%3B%20%5C%3B%20%5C%3B%20h_%7Bi%7D%28x%29%3D0%2Ci%5Cin%20%5Cvarepsilon%20%5C%5C%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20g_%7Bj%7D%28x%29%5Cgeq%200%2Cj%5Cin%20%5Ceta%20%5Cend%7Bmatrix%7D,的有约束优化问题

eq?x%5E%7B%28k%29%7D为迭代算法的第k次迭代点,则第k+1次的迭代点表示为:

eq?x%5E%7B%28k+1%29%7D%3Dx%5E%7B%28k%29%7D+%5Calpha%20_%7Bk%7Dd%5E%7B%28k%29%7D

同时要求保证eq?f%28x%5E%7B%28k+1%29%7D%29%5Cleq%20f%28x%5E%7B%28k%29%7D%29且迭代点保持可行,这就是求解得非线性最优化问题的基本迭代格式和要求。

eq?d%5E%7B%28k%29%7D%5Cin%20R%5E%7Bn%7D 搜索方向
eq?%5Calpha%20_%7Bk%7D%5Cin%20R 步长因子

1.2 线性搜索

选取步长因子α的问题称为线性搜索问题,它是一个一维搜索问题,其基本要求在于从eq?x%5E%7B%28k%29%7D出发沿给定的搜索方向eq?d%5E%7B%28k%29%7D确定eq?%5Calpha%20_%7Bk%7D使得

eq?f%28x%5E%7B%28k+1%29%7D%29%3D%20f%28x%5E%7B%28k%29%7D+%5Calpha%20_%7Bk%7Dd%5E%7B%28k%29%7D%29%20%3C%20f%28x%5E%7B%28k%29%7D%29%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%5C%3B%20%5C%3B%20%281%29

对于这样的问题,有两种解决途径:

(1)精确线搜索。选取eq?%5Calpha%20_%7Bk%7D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值