PyTorch深度学习实践——处理多维特征的输入

在之前的学习中,我们处理的是单特征值的输入,这篇blog我们讨论一下多维特征输入的处理。

下图所示是一个糖尿病预测的数据集,图中每一行代表一个样本(x1、.......x8表示8个特征,y表示输出),每一列表示一个特征。

由图可见,我们的模型输入变成了八维的多特征值,所以我们之前的单特征值模型已经不再适用,因为我们需要对每个特征值都进行处理。

我们模型的8个特征值都需要与其相应的权重相乘,并且加上相应的偏置。由此,我们可以通过矩阵的形式进行运算。下图中,因为逻辑回归所以还有套一个Sigmoid函数,所以我们将函数内的整体写为z(i)。

PS:pytorch提供的Sigmoid函数是以向量的形式计算的。

这里把一组的方程运算转换成矩阵运算,这样我们可以通过并行计算提高运行速度。

从代码的角度来看:

​
class Model(torch.nn.Module):
	def __init__(self):
		super(Model, self).__init__()
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值