在之前的学习中,我们处理的是单特征值的输入,这篇blog我们讨论一下多维特征输入的处理。
下图所示是一个糖尿病预测的数据集,图中每一行代表一个样本(x1、.......x8表示8个特征,y表示输出),每一列表示一个特征。
由图可见,我们的模型输入变成了八维的多特征值,所以我们之前的单特征值模型已经不再适用,因为我们需要对每个特征值都进行处理。
我们模型的8个特征值都需要与其相应的权重相乘,并且加上相应的偏置。由此,我们可以通过矩阵的形式进行运算。下图中,因为逻辑回归所以还有套一个Sigmoid函数,所以我们将函数内的整体写为z(i)。
PS:pytorch提供的Sigmoid函数是以向量的形式计算的。
这里把一组的方程运算转换成矩阵运算,这样我们可以通过并行计算提高运行速度。
从代码的角度来看:
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()