伪逆介绍以及在信道估计与均衡中的应用

  1. 伪逆的定义

    • 在矩阵运算中,对于一个矩阵 A m × n A_{m\times n} Am×n,如果它是方阵且可逆,那么它的逆矩阵 A − 1 A^{-1} A1满足 A A − 1 = A − 1 A = I AA^{-1}=A^{-1}A = I AA1=A1A=I,其中 I I I是单位矩阵。但是当 A A A不是方阵( m ≠ n m\neq n m=n)或者是方阵但不可逆时,就引入了伪逆的概念。
    • 矩阵 A A A的伪逆(也称为摩尔 - 彭罗斯伪逆),记为 A + A^{+} A+,它满足以下四个条件:
      • A A + A = A AA^{+}A = A AA+A=A
      • A + A A + = A + A^{+}AA^{+}=A^{+} A+AA+=A+
      • ( A A + ) T = A A + (AA^{+})^T = AA^{+} (AA+)T=AA+
      • ( A + A ) T = A + A (A^{+}A)^T = A^{+}A (A+A)T=A+A
    • 伪逆的计算方法有多种。当 A A A的列满秩( r a n k ( A ) = n rank(A)=n rank(A)=n m ≥ n m\geq n mn)时, A + = ( A T A ) − 1 A T A^{+}=(A^TA)^{-1}A^T A+=(ATA)1AT;当 A A A的行满秩( r a n k ( A ) = m rank(A)=m rank(A)=m m ≤ n m\leq n mn)时, A + = A T ( A A T ) − 1 A^{+}=A^T(AA^T)^{-1} A+=AT(AAT)1。对于一般的矩阵 A A A,可以通过奇异值分解(SVD)来计算伪逆,若 A = U Σ V T A = U\Sigma V^T A=UΣVT,其中 U U U V V V是正交矩阵, Σ \Sigma Σ是对角矩阵,那么 A + = V Σ + U T A^{+}=V\Sigma^{+}U^T A+=VΣ+UT,这里 Σ + \Sigma^{+} Σ+是将 Σ \Sigma Σ中非零对角元素取倒数后得到的矩阵。
  2. 应用场景和例子

    • 线性方程组求解
      • 考虑线性方程组 A x = b Ax = b Ax=b,其中 A A A是系数矩阵, x x x是未知数向量, b b b是常数向量。当 A A A是方阵且可逆时,解为 x = A − 1 b x = A^{-1}b x=A1b。但如果 A A A不是方阵或者不可逆,就可以用伪逆来求一个“最优解”。
      • 例如,设 A = [ 1 2 3 6 ] A=\begin{bmatrix}1&2\\3&6\end{bmatrix} A=[1326] b = [ 4 12 ] b=\begin{bmatrix}4\\12\end{bmatrix} b=[412]
      • 首先求 A A A的秩,对 A A A进行初等行变换可得 [ 1 2 0 0 ] \begin{bmatrix}1&2\\0&0\end{bmatrix} [1020],所以 r a n k ( A ) = 1 rank(A) = 1 rank(A)=1 A A A不可逆。
      • 计算 A A A的伪逆,先进行奇异值分解。计算 A T A = [ 1 3 2 6 ] [ 1 2 3 6 ] = [ 10 20 20 40 ] A^TA=\begin{bmatrix}1&3\\2&6\end{bmatrix}\begin{bmatrix}1&2\\3&6\end{bmatrix}=\begin{bmatrix}10&20\\20&40\end{bmatrix} ATA=[1236][1326]=[10202040]
      • A T A A^TA ATA的特征值,设 λ \lambda λ为特征值,解方程 det ⁡ ( A T A − λ I ) = 0 \det(A^TA-\lambda I)=0 det(ATAλI)=0,即 ∣ 10 − λ 20 20 40 − λ ∣ = 0 \begin{vmatrix}10 - \lambda&20\\20&40-\lambda\end{vmatrix}=0 10λ202040λ =0,展开可得 ( 10 − λ ) ( 40 − λ ) − 400 = 0 (10-\lambda)(40 - \lambda)-400 = 0 (10λ)(40λ)400=0,解得 λ 1 = 50 \lambda_1 = 50 λ1=50 λ 2 = 0 \lambda_2 = 0 λ2=0
      • 对应的特征向量分别为 v 1 = [ 2 1 ] v_1=\begin{bmatrix}2\\1\end{bmatrix} v1=[21] v 2 = [ − 1 2 ] v_2=\begin{bmatrix}-1\\2\end{bmatrix} v2=[12](归一化后),则 V = [ 2 5 − 1 5 1 5 2 5 ] V=\begin{bmatrix}\frac{2}{\sqrt{5}}&\frac{-1}{\sqrt{5}}\\\frac{1}{\sqrt{5}}&\frac{2}{\sqrt{5}}\end{bmatrix} V=[5 25 15 15 2]
      • 对于 A A T AA^T AAT,计算可得 A A T = [ 1 2 3 6 ] [ 1 3 2 6 ] = [ 5 15 15 45 ] AA^T=\begin{bmatrix}1&2\\3&6\end{bmatrix}\begin{bmatrix}1&3\\2&6\end{bmatrix}=\begin{bmatrix}5&15\\15&45\end{bmatrix} AAT=[1326][1236]=[5151545],其特征值为 λ 1 = 50 \lambda_1 = 50 λ1=50 λ 2 = 0 \lambda_2 = 0 λ2=0,对应的特征向量(归一化后) u 1 = [ 1 10 3 10 ] u_1=\begin{bmatrix}\frac{1}{\sqrt{10}}\\\frac{3}{\sqrt{10}}\end{bmatrix} u1=[10 110 3] u 2 = [ − 3 10 1 10 ] u_2=\begin{bmatrix}-\frac{3}{\sqrt{10}}\\\frac{1}{\sqrt{10}}\end{bmatrix} u2=[10 310 1],则 U = [ 1 10 − 3 10 3 10 1 10 ] U=\begin{bmatrix}\frac{1}{\sqrt{10}}&\frac{-3}{\sqrt{10}}\\\frac{3}{\sqrt{10}}&\frac{1}{\sqrt{10}}\end{bmatrix} U=[10 110 310 310 1]
      • Σ = [ 50 0 0 0 ] \Sigma=\begin{bmatrix}\sqrt{50}&0\\0&0\end{bmatrix} Σ=[50 000],则 Σ + = [ 1 50 0 0 0 ] \Sigma^{+}=\begin{bmatrix}\frac{1}{\sqrt{50}}&0\\0&0\end{bmatrix} Σ+=[50 1000]
      • 根据 A + = V Σ + U T A^{+}=V\Sigma^{+}U^T A+=VΣ+UT,计算可得 A + = [ 1 5 1 10 1 10 1 20 ] A^{+}=\begin{bmatrix}\frac{1}{5}&\frac{1}{10}\\ \frac{1}{10}&\frac{1}{20}\end{bmatrix} A+=[51101101201]
      • 那么方程 A x = b Ax = b Ax=b的一个“最优解”为 x = A + b = [ 1 5 1 10 1 10 1 20 ] [ 4 12 ] = [ 4 5 + 12 10 4 10 + 12 20 ] = [ 2 1 ] x = A^{+}b=\begin{bmatrix}\frac{1}{5}&\frac{1}{10}\\ \frac{1}{10}&\frac{1}{20}\end{bmatrix}\begin{bmatrix}4\\12\end{bmatrix}=\begin{bmatrix}\frac{4}{5}+\frac{12}{10}\\\frac{4}{10}+\frac{12}{20}\end{bmatrix}=\begin{bmatrix}2\\1\end{bmatrix} x=A+b=[51101101201][412]=[54+1012104+2012]=[21]。这个解在最小二乘意义下是最优的,即 ∥ A x − b ∥ 2 \left\lVert Ax - b\right\rVert_2 Axb2达到最小。
  3. 信道估计与均衡中的应用 :在通信系统中,信号经过信道传输后会发生失真。例如在一个多输入多输出(MIMO)通信系统中,设发送信号向量为 x ∈ C n × 1 x\in\mathbb{C}^{n\times1} xCn×1,信道矩阵为 H ∈ C m × n H\in\mathbb{C}^{m\times n} HCm×n,接收信号向量为 y ∈ C m × 1 y\in\mathbb{C}^{m\times1} yCm×1,它们之间的关系可以表示为 y = H x + n y = Hx + n y=Hx+n,其中 n n n是噪声向量。为了恢复发送信号 x x x,需要进行信道估计和均衡。在最小二乘意义下,我们可以通过求伪逆来得到一个估计的均衡器。假设我们已经对信道矩阵 H H H进行了估计(通过训练序列等方法),当 m ≥ n m\geq n mn H H H列满秩时, H H H的伪逆 H + = ( H H H ) − 1 H H H^{+}=(H^H H)^{-1}H^H H+=(HHH)1HH H H H^H HH H H H的共轭转置)。

  • 对接收信号 y y y进行均衡得到发送信号的估计 x ^ \hat{x} x^ x ^ = H + y = ( H H H ) − 1 H H y \hat{x}=H^{+}y=(H^H H)^{-1}H^H y x^=H+y=(HHH)1HHy。这样可以在一定程度上减轻信道对信号的影响,提高信号恢复的准确性。 - 例如,考虑一个简单的 2 × 1 2\times1 2×1 MIMO系统(两个接收天线,一个发送天线),信道矩阵 H = [ h 11 h 12 h 21 h 22 ] H=\begin{bmatrix}h_{11}&h_{12}\\h_{21}&h_{22}\end{bmatrix} H=[h11h21h12h22],发送信号 x x x是一个复数标量,接收信号 y = [ y 1 y 2 ] y=\begin{bmatrix}y_1\\y_2\end{bmatrix} y=[y1y2],且 y = H x + n y = Hx + n y=Hx+n,其中 n = [ n 1 n 2 ] n=\begin{bmatrix}n_1\\n_2\end{bmatrix} n=[n1n2]是噪声向量。 - 假设我们已经估计出信道矩阵 H H H,计算其伪逆 H + = ( H H H ) − 1 H H H^{+}=(H^H H)^{-1}H^H H+=(HHH)1HH。这里 H H = [ h 11 ‾ h 21 ‾ h 12 ‾ h 22 ‾ ] H^H=\begin{bmatrix}\overline{h_{11}}&\overline{h_{21}}\\\overline{h_{12}}&\overline{h_{22}}\end{bmatrix} HH=[h11h12h21h22] H H H = ∣ h 11 ∣ 2 + ∣ h 12 ∣ 2 + ∣ h 21 ∣ 2 + ∣ h 22 ∣ 2 H^H H = |h_{11}|^2+|h_{12}|^2 + |h_{21}|^2+|h_{22}|^2 HHH=h112+h122+h212+h222(假设为非零值,即 H H H列满秩)。
  • 那么 H + = 1 H H H [ h 11 ‾ h 21 ‾ h 12 ‾ h 22 ‾ ] H^{+}=\frac{1}{H^H H}\begin{bmatrix}\overline{h_{11}}&\overline{h_{21}}\\\overline{h_{12}}&\overline{h_{22}}\end{bmatrix} H+=HHH1[h11h12h21h22],接收信号 y y y经过均衡后得到发送信号的估计 x ^ = H + y = 1 H H H [ h 11 ‾ h 21 ‾ h 12 ‾ h 22 ‾ ] [ y 1 y 2 ] \hat{x}=H^{+}y=\frac{1}{H^H H}\begin{bmatrix}\overline{h_{11}}&\overline{h_{21}}\\\overline{h_{12}}&\overline{h_{22}}\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix} x^=H+y=HHH1[h11h12h21h22][y1y2]
  1. 信号检测中的应用 - 在码分多址(CDMA)通信系统中,多个用户的信号在同一频段同时传输。设共有 K K K个用户,每个用户的扩频码序列为 s k s_k sk k = 1 , 2 , ⋯   , K k = 1,2,\cdots,K k=1,2,,K),长度为 N N N,接收信号 r r r可以表示为 r = ∑ k = 1 K A k s k + n r=\sum_{k = 1}^{K}A_k s_k + n r=k=1KAksk+n,其中 A k A_k Ak是第 k k k个用户的信号幅度, n n n是噪声。 - 可以将这个问题构建为一个矩阵形式,设 S = [ s 1 T s 2 T ⋯ s K T ] S=\begin{bmatrix}s_1^T\\s_2^T\\\cdots\\s_K^T\end{bmatrix} S= s1Ts2TsKT 是一个 K × N K\times N K×N的矩阵,其行向量是各个用户的扩频码序列, A = [ A 1 A 2 ⋯ A K ] A=\begin{bmatrix}A_1\\A_2\\\cdots\\A_K\end{bmatrix} A= A1A2AK 是信号幅度向量,接收信号 r ∈ C N × 1 r\in\mathbb{C}^{N\times1} rCN×1。则 r = S A + n r = SA + n r=SA+n
  • 为了检测各个用户的信号幅度 A A A,可以使用伪逆。当 S S S行满秩( K ≤ N K\leq N KN且秩为 K K K)时, S S S的伪逆 S + = S T ( S S T ) − 1 S^{+}=S^T(SS^T)^{-1} S+=ST(SST)1。 - 对信号幅度的估计 A ^ = S + r = S T ( S S T ) − 1 r \hat{A}=S^{+}r=S^T(SS^T)^{-1}r A^=S+r=ST(SST)1r。通过这种方式,可以在多个用户信号混合的情况下,尝试分离并检测出各个用户的信号幅度,从而实现信号检测的功能。例如,在一个简单的 2 2 2用户CDMA系统中, s 1 = [ 1 − 1 ] T s_1=\begin{bmatrix}1& - 1\end{bmatrix}^T s1=[11]T s 2 = [ 1 1 ] T s_2=\begin{bmatrix}1&1\end{bmatrix}^T s2=[11]T S = [ 1 − 1 1 1 ] S=\begin{bmatrix}1& - 1\\1&1\end{bmatrix} S=[1111],接收信号 r = [ r 1 r 2 ] r=\begin{bmatrix}r_1\\r_2\end{bmatrix} r=[r1r2],可以按照上述步骤计算伪逆并估计用户信号幅度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值