非主流?论Go语言爬虫的必要性!

事情的起源是我和一个工程师聊天。我在想,为什么会有人使用excel这种奇怪的技术抓取表格?聊着聊着,我们就聊到了Python在爬虫领域弱势的一面。在资源受限的情况下,实现大规模稳定的爬虫,完成企业级每天破亿次采集的数据需求。Go语言在这种情况下,居然能大展拳脚。当然他没有说工作中的细节,这是保密的,只是说到了这项技术的可行性。


总览

先说说爬虫这项技术在各个编程语言中的粗略占比

  • 研究表明,市面上的爬虫技术主要使用 Python、JavaScript (Node.js)、Ruby、Java、C/C++/C#、Go 和 PHP。

  • 根据 GitHub 上开源爬虫项目的数量,Python 占比约 63%,JavaScript (Node.js) 约 22%,其他语言如 Ruby、Java 等各占 3%-4%,C/C++/C# 合计约 3%,Go 和 PHP 各约 3% 和 2%。

  • 数据基于开源项目,可能不完全代表闭源市场,但提供了一个合理的参考。Python和JS两项技术展现了爬虫领域的强大统治力,几乎覆盖了市面上大部分爬虫需求。剩下的几种语言编写的爬虫的应用领域狭隘,但是仍然占据了位置,而今天文末讨论的重点就是Go语言。


各语言爬虫的特点

  • Python:因其易学性、丰富的库(如 Beautiful Soup、Scrapy)和强大的社区支持,被广泛用于爬虫开发。

  • JavaScript (Node.js):特别适合处理动态网页和实时数据提取,Node.js 运行时使其在服务器端爬虫中表现优异。

  • Ruby:以其简单语法和云开发优势著称,常用库如 Nokogiri 适合处理 HTML 解析。

  • Java:在企业级项目中常见,工具如 JSoup 支持 HTML/XML 解析,适合大规模爬虫。

  • C/C++/C#:性能高,但复杂性较高,适合特定高性能需求,数据中这三者被合并统计。

  • Go:新兴语言,性能优异,适合并发处理,逐渐在爬虫领域获得关注。

  • PHP:主要用于网页开发,爬虫支持有限,但仍有一些库如 Simple HTML DOM Parser 可用于简单任务。


市场占比估算

市场占比的估算主要基于 HasData - The Best Programming Languages for Web Scraping 提供的数据,该数据通过统计 GitHub 上开源爬虫项目的数量得出。具体数字如下:

语言

GitHub 项目数量(千)

占比(约)

Python

76.1

63%

JavaScript (Node.js)

27

22%

Ruby

4.3

4%

Java

3.7

3%

C/C++/C# (合计)

3.4

3%

Go

3.3

3%

PHP

2.7

2%

总计约 120.5k 项目,百分比计算基于此总和。需要注意的是,C/C++/C# 在数据中被合并,具体每个语言的单独占比未提供,这反映出这三者在开源爬虫项目中的使用相对较少,难以单独统计。


数据来源和局限性

上述占比数据来源于 GitHub 上开源爬虫项目的数量统计,反映了开源社区的使用偏好。然而,这可能不完全代表闭源或商业爬虫项目的市场分布。例如,企业内部开发的爬虫可能更倾向于 Java 或 C++,而这些项目通常不公开在 GitHub 上;小众的Lua脚本语言也可以进行简单的数据采集,但是大家更倾向于使用Python,因为更快更便捷,这部分也不会被Github统计收录。

因此,数据可能低估了某些语言在特定领域的使用,例如:在气象和地理领域的Fortran语言简直横扫千军,而在工控领域以及游戏开发领域的C#语言深入人心,份额不多的MATLAB语言在模拟仿真和流体力学模拟是一把好手。

在我调研的过程中,还参考了其他技术博客,如 Scraping Dog - 6 Best Programming Languages for Web Scraping in 2024ZenRows - 7 Best Programming Languages for Web Scraping。这些文章虽然未提供具体市场份额,但一致指出 Python 和 JavaScript (Node.js) 是最受欢迎的选择,Python 因其易用性和库支持而领先,有的文章忽略了Go语言爬虫,有的文章忽略了R语言爬虫。

例如,ZenRows提到了一项针对 374 名经验丰富的爬虫开发者的调查,强调 Python 和 Node.js 的偏好,这与 GitHub 数据趋势一致。此外,Stack Overflow Developer Survey 显示 JavaScript 是最常用的编程语言,这也支持了 Node.js 在爬虫中的高占比(Crawlee社区也佐证了这一点)。


Go语言爬虫的必要

我个人更喜欢用 Python 和JavaScript进行网络爬虫,因为在 Youtube 、Oxylabs和Github 等网站上都有更多这方面的教程和资源,但 Go 非常适合大规模、高性能的项目。除非是大型企业,否则我几乎看不到有人使用 Go 代替 Python。

Python在爬虫领域做出了卓越贡献,开发了各种易用的第三方库。为了解决GIL(Global Interpreter Lock,全局解释器锁)这个问题,有的朋友换掉了CPython,改用pypy或Ironpy;有的朋友使用Multiprocessingthreadingasyncio/await,只为提高爬虫性能。为了突破反爬和机器人风控,甚至把Deep Learning的识别技术都拿来破解验证码了。更有甚者开发Scrapy框架和分布式架构,就是为了应对大规模爬虫技术的需求。

但在资源和设备受限的情况下,如何完成大规模爬虫抓取任务?

Go VS Python

Go语言爬虫将呈现出前所未有的优势!下面我将列表对比二者。

对比维度PythonGo
内存占用❌动态类型和GC机制导致内存占用较高,
大规模数据(如亿级)
处理时性能下降明显
✅ 编译型语言+高效GC机制,
内存回收更主动,
适合处理海量数据,
内存泄漏风险低
并发能力⚡依赖 asyncio 协程或多
进程(受GIL限制),
IO密集型任务效率有限
✅原生并发无GIL,
支持goroutine和channel,
适合CPU/IO密集型任务
执行效率⏳解释型语言,动态语言
执行速度较慢,
大规模任务时解释器开销显著
⚡编译型语言,静态语言,
编译为机器码,执行速度快,
尤其适合需要低延迟的实时爬虫场景。
适用场景✅中小规模爬虫、
快速开发、数据清洗
(Scrapy/Requests+BS4主导)
🛠️ 依赖分布式框架
(如Scrapy-Redis)
扩展大规模任务。
✅超大规模爬虫
(如日亿级请求)、
高稳定性需求,资源受限
🛠️ (如企业级长期运行)。
原生支持分布式部署,
代码维护性高。
社区生态🌍生态丰富: Scrapy、
BeautifulSoup、
Selenium等成熟库,
开发者资源充足,
教程和攻略众多
📦标准库强大(如 net/http),
但第三方库较少(如Colly),
社区开发者和教程也有限
集成工具链需自行开发。
开发体验🚀语法简洁,对初学者友好,
调试工具完善,
适合中小企业的任务交付
📐强类型+严格语法,
对初学者有门槛,编译期错误检查,
适合团队协作和长期维护

Go语言高性能爬虫开发

1.Colly

Colly 是一个简单而又强大的 Go 爬虫框架,其使用起来非常方便。在 Colly 中,我们可以通过注册回调函数来处理页面中的数据,同时还可以使用 CSS 选择器进行页面元素的定位。Colly 还支持异步请求、代理、Cookie 管理等功能,是一个非常实用的爬虫框架。开源项目共同开发。

2.Pholcus

Pholcus(幽灵蛛)是一款纯 Go 语言编写的支持分布式的高并发爬虫软件,仅用于编程学习与研究。

它支持单机、服务端、客户端三种运行模式,拥有Web、GUI、命令行三种操作界面;规则简单灵活、批量任务并发、输出方式丰富(mysql/mongodb/kafka/csv/excel等);另外它还支持横纵向两种抓取模式,支持模拟登录和任务暂停、取消等一系列高级功能。开发者来自中国。

3.Go_Spider

一个很棒的 Go 并发爬虫框架。爬虫灵活且模块化。可以轻松扩展为个性化爬虫,也可以只使用默认的爬虫组件。开发者来自中国。

4.今日热榜(TopList)

今日热榜,一个获取各大热门网站热门头条的聚合网站,使用Go语言编写,多协程异步快速抓取信息。开发团队来自中国,我个人觉得这个团队很棒。

Go语言爬虫求职

我在这贴一张爬虫技术群招聘的消息,职级:高级爬虫工程师(分布式框架方向)P8

图中有句话:熟练使用Go语言者优先。各位学爬虫工程师,问问自己,能符合上述多少条件?

一旦采取的网站变多,就必须靠队列才能扛住。

一旦数据量写入太大,就得靠硬件升级+数据库才能扛得住。

一旦网站的风控检测和反爬手段变更,还得读取Log定位,然后继续技术攻关。

大规模爬虫还必须维护各种各样的资源,IP池,网站池等,这又涉及到爬虫集群管理技术;

十年前,也就是2016年,selenium风光一时,自动化和无头浏览器(Headless Browser)也曾是爬虫技术的主流。后来动态加载(AJAX)和反爬风控技术出现,这类技术迅速衰败没落,取而代之是磅礴的JavaScrip逆向分析技术。

安卓和苹果逆向的技术开始兴起,又有多少爬虫工程师的需求?

现在AI时代到来了,浏览器插件和脚本横行,自动反混淆和自动定位参数的技术已经出现,这次又有多少技术更新迭代?

我不是鼓吹Go爬虫天下无敌,大企业都必须用Go爬虫,每个爬虫同行都得学Go爬虫,萌新入门都得先学Go爬虫,我从来不会这样鼓吹。学什么样的爬虫得结合市场需求,自身定位以及最新的技术发展状况。因为我知道,有破亿级别数据采集需求的企业是极少数,Go爬虫的使用场景相当有限。普通的中小企业,怎么会有破亿级别的数据需求?

举个例子:我亲自接单开发的,一家位于深圳的水果店,就是抓一下当季畅销水果在广东不同市区的定价,有了定价可以找最低的供货商,这样利润能大一点。他的水果店总共不到20种水果,就算每种水果有100种不同定价,足够多了吧?每天也才2000条数数据体量,一个excel表格就能装下。一个水果店,我何必用Go语言开发爬虫,直接用现有的代码,改一改,马上就能用了。


哪些企业会需要Go语言?

BaiDu,Google,Yandex,NAVER等,这类做Search Engine技术的公司,每天是肯定有破亿级别的数据采集需求。举个例子:搜索引擎的用户和访问次数均已破亿!而搜索引擎本质就是爬虫。

Bytedance,Alibaba,Tencent等,这些数据类大厂是有可能需要的。举个例子:淘宝作为电商的先驱,需要看到其他电商平台,同一商品的价格,而且需要查看其他电商平台有哪些新品类是自己不具备的。几乎每一秒都是数以万计的信息采集,每天破亿轻而易举。

Ctrip,途牛,铁路12306等,这类OTA软件,在特定节假日,爬虫需求是扩大的。举个例子:春运期间和国庆旅游季,这类软件将承接用户海量访问次数。

其他的企业,不会有那么多需求,一般几个或十几个逆向安全工程师就能搞定了。实在是到了破亿级别的数据需求量,自然会想办法用Go语言重构爬虫框架,提高性能,节约内存和IO资源。否则就只能掏钱继续雇人,升级硬件设备。

总结:Go在特定的领域和需求下,比Python更胜任爬虫需求。大部分情况下,学好Python和JS逆向就够用了,如果是为了精进技术和进一步升职加薪,那就只能朝更深入的方向钻研。

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菩提树下呀

五毛钱可以吗,宝?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值