什么是神经⽹络
⼈⼯神经⽹络( Artificial Neural Network, 简写为ANN)也简称为神经⽹络(NN),是⼀种模仿⽣物神经⽹络结构和功能的 计算模型。⼈脑 可以看做是⼀个⽣物神经⽹络,由众多的神经元连接⽽成。各个神经元传 递复杂的电信号,树突接收到输⼊信号,然后对信号进⾏处理,通过轴突输出信号。下图是⽣物神经元示意图:
那怎么构建⼈⼯神经⽹络中的神经元呢?
受⽣物神经元的启发,⼈⼯神经元接收来⾃其他神经元或外部源的输⼊,每个输⼊都有⼀个相关的权值(w),它是根据该输⼊对当前神经元的重要 性来确定的,对该输⼊加权并与其他输⼊求和后,经过⼀个激活函数f, 计算得到该神经元的输出。 那接下来我们就利⽤神经元来构建神经⽹络,相邻层之间的神经元相互连 接,并给每⼀个连接分配⼀个强度,如下图所示:
神经⽹络中信息只向⼀个⽅向移动,即从输⼊节点向前移动,通过隐藏节 点,再向输出节点移动,⽹络中没有循环或者环。其中的基本构件是:
输⼊层:即输⼊x的那⼀层
输出层:即输出y的那⼀层
隐藏层:输⼊层和输出层之间都是隐藏层
特点是:
同⼀层的神经元之间没有连接。
第N层的每个神经元和第N-1层的所有神经元相连(这就是full connected的含义),第N-1层神经元的输出就是第N层神经元的输⼊。
每个连接都有⼀个权值。
神经元是如何⼯作的?
⼈⼯神经元接收到⼀个或多个输⼊,对他们进⾏加权并相加,总和通过⼀ 个⾮线性函数产⽣输出。
所有的输⼊xi,与相应的权重wi相乘并求和:
将求和结果送⼊到激活函数中,得到最终的输出结果: