深度学习简介

人工神经网络(ANN)是一种模拟生物神经网络的计算模型,由神经元组成,每个神经元接收加权输入,通过激活函数生成输出。信息从输入层经隐藏层单向传递至输出层,每层神经元全连接,权重决定了信号传递的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是神经⽹络

              ⼈⼯神经⽹络( Artificial Neural Network, 简写为ANN)也简称为神经⽹络(NN),是⼀种模仿⽣物神经⽹络结构和功能的 计算模型。⼈脑 可以看做是⼀个⽣物神经⽹络,由众多的神经元连接⽽成。各个神经元传 递复杂的电信号,树突接收到输⼊信号,然后对信号进⾏处理,通过轴突输出信号。下图是⽣物神经元示意图:

         那怎么构建⼈⼯神经⽹络中的神经元呢?

        受⽣物神经元的启发,⼈⼯神经元接收来⾃其他神经元或外部源的输⼊,每个输⼊都有⼀个相关的权值(w),它是根据该输⼊对当前神经元的重要 性来确定的,对该输⼊加权并与其他输⼊求和后,经过⼀个激活函数f, 计算得到该神经元的输出。 那接下来我们就利⽤神经元来构建神经⽹络,相邻层之间的神经元相互连 接,并给每⼀个连接分配⼀个强度,如下图所示:

        神经⽹络中信息只向⼀个⽅向移动,即从输⼊节点向前移动,通过隐藏节 点,再向输出节点移动,⽹络中没有循环或者环。其中的基本构件是:

         输⼊层:即输⼊x的那⼀层

        输出层:即输出y的那⼀层

        隐藏层:输⼊层和输出层之间都是隐藏层

特点是:

        同⼀层的神经元之间没有连接。

         第N层的每个神经元和第N-1层的所有神经元相连(这就是full connected的含义),第N-1层神经元的输出就是第N层神经元的输⼊。

        每个连接都有⼀个权值。

 神经元是如何⼯作的?

         ⼈⼯神经元接收到⼀个或多个输⼊,对他们进⾏加权并相加,总和通过⼀ 个⾮线性函数产⽣输出。

 

        所有的输⼊xi,与相应的权重wi相乘并求和:

 

        将求和结果送⼊到激活函数中,得到最终的输出结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XMM-struggle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值