作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在机器学习应用日益广泛的今天,多输入单输出回归预测是解决众多实际问题的关键技术,如房价预测、销售额预估、环境指标测算等。然而,传统回归模型在处理高维、复杂的多输入数据时,常面临计算效率低、预测精度不足的困境。DBO-LightGBM 模型将蜣螂算法(DBO)与轻量级梯度提升机(LightGBM)相结合,为多输入单输出回归预测带来了新的突破方向。
一、多输入单输出回归预测:挑战与需求
多输入单输出回归预测旨在通过多个自变量特征,预测一个目标变量的数值。以房价预测为例,房屋面积、房龄、周边配套设施、交通便利程度等多种特征共同影响房价这一输出结果。这些输入特征往往具有高维性、非线性关系,且数据中可能存在噪声和冗余信息,使得模型难以准确捕捉特征与目标变量之间的映射关系。传统的回归模型,如线性回归、决策树回归等,在处理此类复杂数据时表现欠佳,而一些复杂的机器学习模型虽然具备更强的拟合能力,但可能存在计算资源消耗大、训练时间长的问题,因此亟需更高效、精准的模型。
二、核心组件原理剖析
2.1 蜣螂算法(DBO)
蜣螂算法是一种新兴的元启发式优化算法,灵感来源于蜣螂滚动粪球寻找合适巢穴的行为。在算法中,每个蜣螂个体代表一个潜在解,粪球的滚动过程模拟解的搜索过程。蜣螂通过