空洞卷积过程可视化

本文介绍了空洞卷积的概念,其主要作用是在保持参数量不变的情况下扩大卷积神经网络的感受野,从而获取更多特征。通过设置合适的膨胀因子,可以控制卷积核的感受野大小,防止图像尺寸变化。代码示例展示了如何在PyTorch中实现空洞卷积,并构建了一个包含多层空洞卷积的模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空洞卷积

空洞卷积的作用是在不增加参数量的情况下,增大感受野,获得更多的特征。

空洞卷积中padding与dilation所使用的因子需要是相同的,否则,可能会导致图像的尺寸会发生变化,导致就不是膨胀卷积。

假如卷积核为3*3,膨胀因子为2,那么padding必须为2,否则,它经过膨胀卷积之后,它的尺寸会变小。

import torch.nn as nn
# import torch
from torchstat import stat


# from torchsummary import summary

# from nets.ghostnet import ghostnet
class Conv(nn.Module):
    def __init__(self):
        super(Conv, self).__init__()
        self.conv = nn.Sequential(
            nn.MaxPool2d()

        )


class ConvModule(nn.Module):
    def __init__(self):
        super(ConvModule, self).__init__()
        # 定义六层卷积层
        # 两层HDC(1,2,5,1,2,5)
        self.conv = nn.Sequential(
            # 第一层 (3-1)*1+1=3 (64-3)/1 + 1 =62
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=1),
            nn.BatchNorm2d(32),
            # inplace-选择是否进行覆盖运算
            nn.ReLU(inplace=True),
            # 第二层 (3-1)*2+1=5 (62-5)/1 + 1 =58
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(32),
            # inplace-选择是否进行覆盖运算
            nn.ReLU(inplace=True),
            # 第三层 (3-1)*5+1=11  (58-11)/1 +1=48
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=5, dilation=5),
            nn.BatchNorm2d(32),
            # inplace-选择是否进行覆盖运算
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        out = self.conv(x)
        return out


stat(ConvModule(), (32, 13, 13))

空洞卷积部分的代码,来自如下链接。

https://blog.csdn.net/qq_37534947/article/details/109727232

### 关于空洞卷积神经网络的结构 空洞卷积(Dilated Convolution),也被称为膨胀卷积,是一种特殊的卷积操作方式。它通过在滤波器权重之间插入零值来扩大感受野而不增加参数数量或计算量。这种技术使得模型能够在不降低分辨率的情况下捕获更大范围的空间上下文信息[^2]。 #### 空洞卷积的特点 - **扩展的感受野**:相比传统卷积,空洞卷积能够有效增大感受野而无需额外堆叠更多层或者减小输入尺寸。 - **保持空间分辨率**:由于没有下采样过程,因此可以保留原始图像中的细节特征。 - **高效性**:相比于标准卷积方法,在相同条件下实现更广覆盖的同时减少了所需训练参数的数量。 以下是基于Python TensorFlow框架的一个简单示例代码展示如何构建带有空洞卷积层的基础CNN架构: ```python import tensorflow as tf from tensorflow.keras import layers, models def dilated_conv_model(): model = models.Sequential() # 添加普通卷积层作为初始处理阶段 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) # 使用不同扩张率(dilation rate) 的空洞卷积层 model.add(layers.Conv2D(64, (3, 3), dilation_rate=2, padding="same", activation='relu')) model.add(layers.Conv2D(128, (3, 3), dilation_rate=4, padding="same", activation='relu')) # 可选池化或其他常规组件... model.add(layers.MaxPooling2D((2, 2))) return model model = dilated_conv_model() print(model.summary()) ``` 尽管这里提供了文字描述以及简单的代码片段用于理解概念,但是具体到可视化图表方面,则通常由专门绘图工具生成。对于想要获取详细的`dilated convolutional neural network architecture diagram`来说,推荐查阅学术论文附录部分或者是利用Netron这样的专用软件打开保存好的Keras/TensorFlow模型文件(.h5,.pb等),从而直观看到整个网络拓扑关系及其各节点间连接情况[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值