在不使用循环的情况下使用暴力方法求解图像的距离变换

文章展示了如何使用Python和NumPy库计算二维数组中每个1的位置到其他1位置的最小距离,通过argwhere和计算欧氏距离实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import time

import matplotlib.pyplot as plt
import numpy as np
# a_time = time.time()
# arr = np.array([
#     [0, 0, 0, 0, 0, 0, 0, 0],
#     [0, 0, 0, 0, 0, 0, 0, 0],
#     [0, 0, 0, 0, 0, 0, 0, 0],
#     [0, 0, 0, 1, 1, 0, 0, 0],
#     [0, 0, 0, 0, 0, 0, 0, 0],
#     [0, 0, 0, 0, 0, 0, 0, 0],
#     [0, 0, 0, 0, 0, 0, 0, 0]])
# arr = np.zeros((1000,1000))
# arr[500][500] = 1
# arr[500][501] = 1
# arr[500][502] = 1
#
# # 找到1的索引
# indices = np.argwhere(arr == 1)
#
# distances = []
# for i in range(arr.shape[0]):
#     for j in range(arr.shape[1]):
#
#             # 计算到最近的1点的距离
#         min_distance = np.min(np.linalg.norm(indices - [i, j], axis=1))
#         distances.append(min_distance)
# b_time = time.time()
# print(b_time-a_time)
#
# distances = np.array(distances).reshape(7,8)
# distances = distances/np.max(distances)*255
# plt.imshow(distances,cmap='gray')
# plt.show()
# # print(distances)


import numpy as np

arr = np.array([
    [0, 0, 0, 0, 0, 0, 0, 0],
    [0, 1, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 1, 0, 0],
    [0, 0, 0, 1, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0, 0]])

# 找到1的索引
b_time = time.time()
indices = np.argwhere(arr == 1)
indices1 = np.indices(arr.shape)
x_indices = indices1[0].ravel()
y_indices = indices1[1].ravel()
result_indices = (x_indices, y_indices)
# 计算距离
a = indices[:, 0, None]-result_indices[0]
b = indices[:, 1, None]-result_indices[1]
c = np.sqrt(a**2+b**2)
# distances = np.sqrt(np.min((indices[:, 0, None] - result_indices)**2
#                     + (indices[:, 1, None] - result_indices)**2, axis=1))
c_time = time.time()
print(c_time-b_time)
min_values = np.min(c,axis=0).reshape(7,8)
plt.imshow(min_values,cmap='gray')
plt.show()
# min_values.shape
# print(distances)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BTU_YC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值