如果想利用GPU来提升运算速度,就需要安装GPU版Pytorch。
在安装之前,需要先配置GPU环境(安装CUDA和CudaNN)
1.安装CUDA
- 命令行输入nvidia-smi,查看驱动信息
-
- 从官网下载对应版本的安装程序 CUDA Toolkit Archive | NVIDIA Developer
- 安装(推荐自定义安装在有空余的盘中,我的安装地址:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 ;D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.1 )
- 验证:输入nvcc --version 进行检查
2.安装CudaNN
- 下载Cudann: cuDNN Download | NVIDIA Developer(需要先注册账号)
- 将压缩包解压至CUDA安装路径下(D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)
- 验证:
- 进入 d:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite
- 运行bandwidthTest.exe
- 输出结果Result = PASS,安装成功
3.安装Pytorch
- 进入官网,查看以往版本 :Previous PyTorch Versions | PyTorch,根据版本选择合适的下载命令
可以更改命令的URL,利用镜像提升下载速度:
镜像源参考: (似乎清华镜像源目前暂不可用) 豆瓣(douban) http://pypi.douban.com/simple/ 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/ 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ 中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
- pip命令:末尾添加 -i http://mirrors.aliyun.com/pypi/simple/ some-package --trusted-host mirrors.aliyun.com 我使用的命令如下(不过没奏效):
python pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple/ some-package --trusted-host mirrors.aliyun.com
- conda命令:将-c 后的字符替换为https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/平台类型(如下图示)/
python conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
- 等待安装完成
- 验证:
import torch
torch.__version__
'1.8.0'
torch.cuda.is_available()
True
torch.cuda.device(0)
<torch.cuda.device object at 0x0000014CCCDD4788>
torch.cuda.device_count()
1
torch.cuda.get_device_name(0)
'GeForce GTX 1650'
pytorch验证
安装成功