背包九江 背包问题求具体方案

本文介绍了一种解决0-1背包问题的方法,通过逆向DP算法寻找最大价值及字典序最小的物品组合方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号范围是 1…N。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。

物品编号范围是 1…N。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 6
输出样例:
1 4

解题思路:

一般我们求方案数是吧DP问题当作图论问题求方案数。如图:

然后从 n 点往前推方案数。

但这题求的是字典序最小的方案数,以上方法只能求从 n 点开始的方案数,因此我们只需要把循环的顺序翻转过来就可以求出从点 1 出发字典序最小的方案数

 

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1010;

int n, m;
int f[N][N];
int v[N], w[N];

int main() 
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for (int i = n; i ; i -- ) // 从第 n 个物品往前开始计算
        for (int j = 0; j <= m; j ++ )
        {
            f[i][j] = f[i + 1][j];
            if (j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
        }
        
    int j = m;
    for (int i = 1; i <= n; i ++ ) // 找出字典序最小的方案
        if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i])
        {
            cout << i << " ";
            j -= v[i];
        }
        
    return 0;
}