(图象)离散直方图规定化(均衡化)的直观数学原理

一、名词解释

1. 直方图规定化

        1.1 通俗解释:将原始直方图n频数分布,以模板直方图s频数分布为参考,重新映射为一个最接近s的目标直方图n',模板直方图s为任意分布。如图fig.1

图片1
fig.1 直方图规定化示例

        1.2 细节:该“重新映射”需遵循以下规则:

        ①规定:映射有:n_{i}^{'}\leftarrow \{n_{p},n_{p+1}, ... , n_{q-1},n_{q}\},即原直方图n频数的连续序列映射为目标直方图n'的单个频数;
        ②对于如上映射,有:n_{i+1}^{'}\leftarrow \{n_{q},n_{q+1}, ... , n_{r-1},n_{r}\},即目标直方图连续频数映射互不重叠、相互衔接;
        ③对于以上p、q、r、i,有: 0\leq p \leq q \leq r \leq L-1以及0\leq i \leq L-1,并且q\leq i其中L为频数总数

        1.3 一些小结论(映射示例见图fig.2)

        ①n与n'等势,即:n与n'的可能取值(与频数区分)相同
        ②n到n'的映射满射但不入射,即:n的每个元素均映射于n'内某个元素。但n'可能存在元素未被映射
        ③原直方图n中元素n_{p}不能映射任意n_{q}^{'},其中q<p

图片2
fig.2 映射规则示例

2.  直方图均衡化

        通俗解释:将原始直方图n频数分布重新映射为一个最接近均匀分布的目标映射n'。直方图均衡化为直方图规定化的一个特例,当目标直方图s均匀分布时,直方图规定化即为直方图均衡化。因此,本文仅讨论更具普遍性的直方图规定化的直观数学原理。

二、离散直方图规定化的直观数学原理

1. 数学表达

 n_{k}^{'} = round(L/N \sum_{i=0}^{k}n_{i})\ \ (1) 

        其中:①round()为取整函数;
        ②L为原直方图元素的长度,若为一般灰度图,则L=256;
        ③N为直方图样本总数,在图象中为该图象总像素数;
        该表达式较为抽象,可构建如下模型理解:若一个值v在原直方图n中累计为前p%,那么这个值规定化后应该映射为参考直方图s前p%对应的值v',且v'≥v

2.直观理解

        以图象为例,将n_{p} \sim n_{q}映射为n_{k}^{'},其中p~q应连续且q不大于k,使得\sum_{i=p}^{q}n_{i}\simeq s_{k}(此处\simeq符号代表最接近于,评价标准根据实际情况自定义)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值