
深度学习
文章平均质量分 91
本专栏用来记录对深度学习的学习笔记。
这个函数可导
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是感知机?感知机的XOR问题及解决方法
本文主要介绍了什么是感知机,然后说明了感知机在“与”、“或”、“非”中的应用,并通过一个例子提出了感知机的缺陷即无法解决“异或”问题,最终通过叠加多个单层感知机来构建一个多层感知机(MLP)的策略来解决“异或”问题,从而实现对非线性问题的分类。原创 2024-04-01 21:31:15 · 1917 阅读 · 0 评论 -
UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images原创 2024-11-26 10:08:23 · 689 阅读 · 0 评论 -
【神经网络结构可视化】使用 Visualkeras 可视化 Keras / TensorFlow 神经网络结构
Visualkeras是一个Python包,用于帮助可视化Keras(独立或包含在tensorflow中)神经网络架构。Visualkeras源代码链接:https://github.com/paulgavrikov/visualkeras安装Visualkeras:pip install visualkeras -i https://pypi.tuna.tsinghua.edu.cn/simple原创 2024-05-26 16:39:37 · 1164 阅读 · 0 评论 -
【数据标注】使用LabelImg标注YOLO格式的数据(案例演示)
本文介绍了如何安装LabelImg及一些常用的设置和快捷键的使用。除此之外,还演示了如何从零开始对一个数据集中的图片进行标注及对标注信息进行验证。原创 2024-04-26 15:24:58 · 15806 阅读 · 0 评论 -
【神经网络结构可视化】PlotNeuralNet的安装、测试及创建自己的神经网络结构可视化图形
PlotNeuralNet的安装、测试及创建自己的神经网络结构可视化图形。原创 2024-04-24 19:40:41 · 4056 阅读 · 0 评论 -
【YOLOv5项目】基于CCPD2020数据集的车牌检测
基于CCPD2020数据集的车牌检测(完整项目文件+环境配置+训练好的模型文件)数据集包括:CCPD2020原始数据集、CCPD2020数据集YOLO格式数据yaml文件包括:MyData.yaml模型预训练权重文件包括:yolov5s.pt、yolov5x.pt训练了500轮的模型文件:best.pt原创 2024-04-20 15:53:36 · 8202 阅读 · 6 评论 -
【YOLOv5】利用Kaggle的GPU训练(运行)yolov5模型(项目)
本文记录了如何把YOLOv5项目部署到Kaggle中使用GPU进行模型训练。原创 2024-04-19 16:14:38 · 6431 阅读 · 8 评论 -
【YOLOv5】使用yolov5训练模型时报错合集
这篇文章用来记录在使用yolov5训练模型时报错处理,持续更新······2024/4/18【问题一】VsCode终端无法进入Anaconda创建的虚拟环境【问题二】怎么在VsCode中为项目配置Anaconda创建的虚拟环境【问题三】RuntimeError: result type Float can't be cast to the desired output type __int64【问题四】AttributeError: 'FreeTypeFont' object has no att原创 2024-04-18 15:08:09 · 3008 阅读 · 0 评论 -
【图文教程】在PyCharm中导入Conda环境
在学习机器学习的路上,我们就像是探险家,而Conda环境就是我们的神奇工具箱。但有时候,就像在迷宫里找不到出口一样,我们需要将这个工具箱连接到我们的“魔法地图”——PyCharm解释器上。 每次遇到这个问题,我都感觉自己像是那个总是忘记咒语的魔法师,不得不翻遍所有的魔法书(教程)才能找到答案。所以,今天我要分享我的独门秘籍,让你轻松地将Conda环境导入到PyCharm中,就像把魔法棒指向目标一样简单! 准备好了吗?让我们开始这场魔法之旅吧!原创 2024-04-16 12:54:01 · 6269 阅读 · 0 评论 -
【Conda基础命令】使用conda创建、查看、删除虚拟环境及可能的报错处理
本文介绍了conda 如何创建、查看、删除虚拟环境及相关报错处理。1、创建虚拟环境:conda create -n name python=3.62、激活虚拟环境:conda activate myenv3、退出当前的虚拟环境:conda deactivate4、查看已有的虚拟环境:conda env list5、删除已有的虚拟环境(谨慎操作):conda remove -n myenv --all6、name、myenv 需更换为自己的虚拟环境名原创 2024-04-16 10:23:18 · 32756 阅读 · 1 评论 -
训练集、验证集和测试集 + 训练误差和泛化误差 + 欠拟合和过拟合
这篇文章首先介绍了什么是训练集、验证集和测试集,举了一个例子来说明三者间的区别。紧接着提出了什么是训练误差和泛化误差。然后讨论了当训练数据稀缺时K折交叉验证的使用。最后说明了什么是欠拟合和过拟合以及是否过拟合或欠拟合可能取决于模型复杂性和可用训练数据集的大小。原创 2024-04-03 15:22:18 · 2363 阅读 · 1 评论 -
基于Fashion‐MNIST数据集和MNIST数据集的多层感知机(MLP)两个案例代码实现
这篇文章是本人在学习《动手学深度学习》这本书的4.2. 多层感知机的从零开始实现和4.3. 多层感知机的简洁实现这两节的记录。以上两节的多层感知机模型代码实现是基于Fashion‐MNIST数据集的,对此在文章的最后,添加了一个案例使用多层感知机模型实现MNIST数据集分类。原创 2024-04-02 20:50:22 · 1731 阅读 · 1 评论 -
多层感知机(MLP)
多层感知机是在单层神经网络的基础上引入一个或多个隐藏层,使神经网络有多个网络层,并通过激活函数转换隐藏层的输出。如果多层感知机没有激活函数转换隐藏层的输出,那么多层感知机将退化成线性模型。为此,为了发挥多层架构的潜力,我们在仿射变换之后对每个隐藏单元应用非线性的激活函数。此外,为了构建更通过的多层感知机,我们可以叠加多个隐藏层,从而产生更有表达能力的模型。原创 2024-04-02 12:20:59 · 1341 阅读 · 1 评论 -
softmax函数
本文先介绍了softmax的函数公式,并详细推导了softmax函数公式的求导过程,然后说明了softmax的溢出问题,并探讨了解决方法,最后提及了softmax函数在多分类问题中的应用。原创 2024-03-31 15:41:05 · 6480 阅读 · 1 评论 -
常见的激活函数(sigmoid、tanh、ReLU、Leaky ReLU、P-ReLU、R-ReLU、ELU、Swish、Mish、Maxout、softmax)
本文介绍了一些常见的激活函数sigmoid、tanh、ReLU、Leaky ReLU、P-ReLU、R-ReLU、ELU、Swish、Mish、Maxout、softmax,给出了它们的计算表达式,并推导了一些常用的激活函数的导数公式。此外,本文绘制了这些激活函数的函数和导数图像,并探讨了它们的优缺点和应用场景。原创 2024-03-31 15:18:15 · 4904 阅读 · 1 评论 -
激活函数(Activation Function)
本文介绍了什么是激活函数,然后通过一个线性变换的例子引出为什么要使用激活函数,接着详细探讨了激活函数的几个性质,最后提出了激活函数为什么需要非线性函数及什么时候能用线性激活函数两个问题。原创 2024-03-28 13:51:22 · 1802 阅读 · 1 评论 -
(一文理解)信息量、熵、KL散度、交叉熵及CrossEntropyLoss
本文首先重温了一些常见的对数函数运算法则,接着介绍了什么是信息量和熵,然后通过KL散度推出交叉熵损失函数的表达式,最后详解PyTorch常用的交叉熵损失函数CrossEntropyLoss()并进行代码实现。原创 2024-03-26 21:15:00 · 1110 阅读 · 0 评论 -
基于PyTorch的线性回归的简洁实现
这篇文章用来记录本人在学习《动手学深度学习》这本书时对章节( 线性回归的简洁实现)的一些困惑、理解和解答。原创 2024-03-24 15:03:53 · 989 阅读 · 2 评论 -
基于PyTorch的线性回归的从零开始实现
这篇文章用来记录本人在学习 《动手学深度学习》这本书时对章节 线性回归的从零开始实现 的一些困惑、理解和解答。原创 2024-03-23 15:42:26 · 938 阅读 · 1 评论