ubantu部署yolov5(第二集:部署与使用yolov5)

参考链接:

【YOLO】在ubuntu上部署yolov5_ubuntu yolov5-CSDN博客

一、yolov5的部署

1.拉取yolov5的代码

git clone https://github.com/ultralytics/yolov5  # clone

2.安装所需的库

这个需要进入上一集创建的虚拟环境里面执行,把包都装在虚拟环境里面

cd yolov5
pip install -r requirements.txt  

二、yolov5的使用

详细内容参考:https://github.com/ultralytics/yolov5,下面是几个示例

对于这个权重,可以先不用管,因为跑它的运行程序的时候,如果找不到权重,它会自己下载。

1.检测图片

将所检测的图片放在yolov5/data/images路径下,检测的结果被放在yolov5/runs/detect/exp。运行下面指令

python detect.py

2.检测视频

vid.mp4为视频的路径,检测的结果被放在yolov5/runs/detect/exp路径下。

python detect.py --weights yolov5s.pt --source vid.mp4

3.检测视频并在screen实时显示

python detect.py --weights yolov5s.pt --source 1.mp4 --view-img

4.实时显示并显示fps

这个需要更改detect.py代码如下:

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
                                                     img.jpg                         # image
                                                     vid.mp4                         # video
                                                     screen                          # screenshot
                                                     path/                           # directory
                                                     list.txt                        # list of images
                                                     list.streams                    # list of streams
                                                     'path/*.jpg'                    # glob
                                                     'https://youtu.be/LNwODJXcvt4'  # YouTube
                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python detect.py --weights yolov5s.pt                 # PyTorch
                                 yolov5s.torchscript        # TorchScript
                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                 yolov5s_openvino_model     # OpenVINO
                                 yolov5s.engine             # TensorRT
                                 yolov5s.mlpackage          # CoreML (macOS-only)
                                 yolov5s_saved_model        # TensorFlow SavedModel
                                 yolov5s.pb                 # TensorFlow GraphDef
                                 yolov5s.tflite             # TensorFlow Lite
                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                                 yolov5s_paddle_model       # PaddlePaddle
"""

import argparse
import csv
import os
import platform
import sys
from pathlib import Path

import torch
from time import time

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from ultralytics.utils.plotting import Annotator, colors, save_one_box

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    non_max_suppression,
    print_args,
    scale_boxes,
    strip_optimizer,
    xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
    weights=ROOT / "yolov5s.pt",  # model path or triton URL
    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
    imgsz=(640, 640),  # inference size (height, width)
    conf_thres=0.25,  # confidence threshold
    iou_thres=0.45,  # NMS IOU threshold
    max_det=1000,  # maximum detections per image
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    view_img=False,  # show results
    save_txt=False,  # save results to *.txt
    save_format=0,  # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
    save_csv=False,  # save results in CSV format
    save_conf=False,  # save confidences in --save-txt labels
    save_crop=False,  # save cropped prediction boxes
    nosave=False,  # do not save images/videos
    classes=None,  # filter by class: --class 0, or --class 0 2 3
    agnostic_nms=False,  # class-agnostic NMS
    augment=False,  # augmented inference
    visualize=False,  # visualize features
    update=False,  # update all models
    project=ROOT / "runs/detect",  # save results to project/name
    name="exp",  # save results to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    line_thickness=3,  # bounding box thickness (pixels)
    hide_labels=False,  # hide labels
    hide_conf=False,  # hide confidences
    half=False,  # use FP16 half-precision inference
    dnn=False,  # use OpenCV DNN for ONNX inference
    vid_stride=1,  # video frame-rate stride
):
    """
    Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.

    Args:
        weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
        source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
            index. Default is 'data/images'.
        data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
        imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
        conf_thres (float): Confidence threshold for detections. Default is 0.25.
        iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
        max_det (int): Maximum number of detections per image. Default is 1000.
        device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
            best available device.
        view_img (bool): If True, display inference results using OpenCV. Default is False.
        save_txt (bool): If True, save results in a text file. Default is False.
        save_csv (bool): If True, save results in a CSV file. Default is False.
        save_conf (bool): If True, include confidence scores in the saved results. Default is False.
        save_crop (bool): If True, save cropped prediction boxes. Default is False.
        nosave (bool): If True, do not save inference images or videos. Default is False.
        classes (list[int]): List of class indices to filter detections by. Default is None.
        agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
        augment (bool): If True, use augmented inference. Default is False.
        visualize (bool): If True, visualize feature maps. Default is False.
        update (bool): If True, update all models' weights. Default is False.
        project (str | Path): Directory to save results. Default is 'runs/detect'.
        name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
        exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
            False.
        line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
        hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
        hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
        half (bool): If True, use FP16 half-precision inference. Default is False.
        dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
        vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.

    Returns:
        None

    Examples:
        ```python
        from ultralytics import run

        # Run inference on an image
        run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')

        # Run inference on a video with specific confidence threshold
        run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
        ```
    """
    source = str(source)
    save_img = not nosave and not source.endswith(".txt")  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
    prev_time = time()  # 记录上一帧处理时间

    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
            if model.xml and im.shape[0] > 1:
                ims = torch.chunk(im, im.shape[0], 0)

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            if model.xml and im.shape[0] > 1:
                pred = None
                for image in ims:
                    if pred is None:
                        pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
                    else:
                        pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
                pred = [pred, None]
            else:
                pred = model(im, augment=augment, visualize=visualize)

        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        current_time = time()  # 记录当前帧处理时间
        inference_fps = 1 / (current_time - prev_time) if (current_time - prev_time) > 0 else 0  # 计算推理帧率
        prev_time = current_time  # 更新上一帧处理时间

        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
            s += "{:g}x{:g} ".format(*im.shape[2:])  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    c = int(cls)  # integer class
                    label = names[c] if hide_conf else f"{names[c]}"
                    confidence = float(conf)
                    confidence_str = f"{confidence:.2f}"

                    if save_csv:
                        write_to_csv(p.name, label, confidence_str)

                    if save_txt:  # Write to file
                        if save_format == 0:
                            coords = (
                                (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
                            )  # normalized xywh
                        else:
                            coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist()  # xyxy
                        line = (cls, *coords, conf) if save_conf else (cls, *coords)  # label format
                        with open(f"{txt_path}.txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)

            # Stream results
            # 在图像上添加推理帧率信息
            annotator.text((10, 30), f"Inference FPS: {inference_fps:.2f}", txt_color=(255, 255, 255))

            im0 = annotator.result()

            # Stream results
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)


def parse_opt():
    """
    Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.

    Args:
        --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
        --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
        --data (str, optional): Dataset YAML path. Provides dataset configuration information.
        --imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
        --conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
        --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
        --max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
        --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
        --view-img (bool, optional): Flag to display results. Defaults to False.
        --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
        --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
        --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
        --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
        --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
        --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
        --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
        --augment (bool, optional): Flag for augmented inference. Defaults to False.
        --visualize (bool, optional): Flag for visualizing features. Defaults to False.
        --update (bool, optional): Flag to update all models in the model directory. Defaults to False.
        --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
        --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
        --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
        --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
        --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
        --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
        --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
        --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
        --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
            consecutive frames. Defaults to 1.

    Returns:
        argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.

    Example:
        ```python
        from ultralytics import YOLOv5
        args = YOLOv5.parse_opt()
        ```
    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
    parser.add_argument(
        "--save-format",
        type=int,
        default=0,
        help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
    )
    parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
    parser.add_argument("--augment", action="store_true", help="augmented inference")
    parser.add_argument("--visualize", action="store_true", help="visualize features")
    parser.add_argument("--update", action="store_true", help="update all models")
    parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
    parser.add_argument("--name", default="exp", help="save results to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    """
    Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.

    Args:
        opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.

    Returns:
        None

    Note:
        This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
        options. Refer to the usage guide and examples for more information about different sources and formats at:
        https://github.com/ultralytics/ultralytics

    Example usage:

    ```python
    if __name__ == "__main__":
        opt = parse_opt()
        main(opt)
    ```
    """
    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

### 部署 YOLOv5 模型于 Ubuntu 系统 #### 1. 环境准备 在 Ubuntu 系统中部署 YOLOv5 的第一步是确保开发环境已正确设置。这通常涉及 Python 和必要的库的安装。 - 安装最新版的 `git` 工具以及 Anaconda 或 Miniconda 来管理虚拟环境[^1]。 - 创建一个新的 Conda 虚拟环境并激活它: ```bash conda create -n yolov5 python=3.8 conda activate yolov5 ``` #### 2. 克隆 YOLOv5 仓库 通过 GitHub 获取官方 YOLOv5 存储库,并将其克隆到本地机器: ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` 此操作会下载整个项目代码及其依赖项结构。 #### 3. 安装依赖项 进入克隆后的目录后,需安装所需的 Python 库来支持模型运行和训练功能: ```bash pip install -r requirements.txt ``` 如果遇到某些特定版本不兼容的情况,则可以尝试手动调整 pip 中的包版本号以满足最低需求条件[^3]。 #### 4. 数据集准备 为了能够顺利执行检测任务,还需要准备好用于测试的数据集。这里推荐使用 VOC 格式的标注数据作为输入样本之一。可以通过提供的链接下载相应资源文件,并解压至合适位置。 #### 5. 加载预训练权重 利用官方发布的预训练权重加快收敛速度或直接进行推理预测。可以从上述资料获取路径处找到对应版本的 `.pt` 文件。 加载方法如下所示: ```python from models.experimental import attempt_load weights_path = 'path/to/best.pt' model = attempt_load(weights_path, map_location='cpu') # or cuda device index ``` #### 6. 运行推断脚本 完成以上准备工作之后就可以调用 detect.py 实现目标识别了。命令形式大致如下: ```bash python detect.py --source path_to_image_or_video --weights best.pt --conf-thres 0.4 --iou-thres 0.5 ``` 其中参数含义分别为待处理媒体的位置、选用的权重档案名还有置信度阈值交幷比标准等设定值[^2]。 最终的结果会被保存进 `/runs/detect/exp` 文件夹里供查看验证效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值