Python 多项式拟合
一、Numpy 实现
多项式拟合原理:Python最小二乘法
这里使用第三方库来实现多项式拟合,而不是使用原始的方法:
numpy 库实现:
import numpy as np
import matplotlib.pyplot as plt
# 生成原始数据
# 生成 20 个在 [0, 1) 之间的随机数作为输入特征
x = np.sort(np.random.rand(100))
# 根据正弦函数生成对应的目标值,并添加噪声
y = np.sin(2 * np.pi * x) + 0.3 * np.random.randn(100)
p_is1 = np.poly1d(np.polyfit(x, y, 3)) # 拟合曲线
x_plot = np.linspace(0, 1, 100)
plt.scatter(x, y, label='Training data', color='blue')
plt.plot(x_plot, p_is1(x_plot), label="predict data")
plt.title('fitting curve')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
二、Torch 实现
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
# 1. 准备数据
# 生成一些示例数据
n_samples = 100
x1 = torch.randn(n_samples, 1)
x2 = torch.randn(n_samples, 1)