Python 多项式拟合

Python 多项式拟合

一、Numpy 实现

多项式拟合原理:Python最小二乘法

这里使用第三方库来实现多项式拟合,而不是使用原始的方法:

numpy 库实现:

import numpy as np
import matplotlib.pyplot as plt

# 生成原始数据
# 生成 20 个在 [0, 1) 之间的随机数作为输入特征
x = np.sort(np.random.rand(100))
# 根据正弦函数生成对应的目标值,并添加噪声
y = np.sin(2 * np.pi * x) + 0.3 * np.random.randn(100)

p_is1 = np.poly1d(np.polyfit(x, y, 3))  # 拟合曲线

x_plot = np.linspace(0, 1, 100) 

plt.scatter(x, y, label='Training data', color='blue')
plt.plot(x_plot, p_is1(x_plot), label="predict data")
plt.title('fitting curve')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()

1739436806_zfayb8n4k7.png1739436805904.png

二、Torch 实现

1739448558_dkfblgxycn.png1739448557822.png

import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader

# 1. 准备数据
# 生成一些示例数据
n_samples = 100
x1 = torch.randn(n_samples, 1)
x2 = torch.randn(n_samples, 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码海探幽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值