1. 硬件成本
(1) GPU 或 TPUs
大规模深度学习模型的训练与推理需要大量计算资源。一般来说,你将需要至少 1-2 个高性能的 GPU(例如 NVIDIA A100 或 V100)来进行推理。如果需要进行微调或训练,则可能需要更多的资源。
- NVIDIA A100 GPU:每个 A100 的价格大约在 8,000-10,000 美元(以购买新卡为例)。如果你选择 2 张卡来支持高效的推理和批量处理,硬件成本大致为 16,000-20,000 美元。
- NVIDIA V100 GPU:每张卡大约在 5,000-6,000 美元之间,选择 2 张 V100 卡时大约需要 10,000-12,000 美元。
如果需要 TPUs,Google 提供了可以本地使用的 TPU 设备(例如 Edge TPU),但通常对于大规模模型,仍然推荐使用 NVIDIA A100/V100。
(2) 服务器
除了 GPU 外,你还需要一个强大的计算机服务器来托管这些 GPU,并为模型提供稳定的计算环境。你需要为服务器配置合适的 CPU、内存和存储。
- CPU:例如 AMD EPYC 7002 系列或 Intel Xeon 处理器,每个 CPU 约 2,000-3,000 美元。
- 内存:128GB 至 256GB 内存,价格大约为 1,000-2,000 美元。
- 存储:一个基于 SSD 的存储系统,容量大约为 2TB,每个 SSD 大约 200-500 美元,依赖于你存储的需求。
- 总计:服务器的成本大约在 10,000-15,000 美元之间,具体取决于配置。 </