[Object Detection Datasets Overview - Ultralytics YOLOv8 Docs](https://docs.ultralytics.com/datasets/detect/)
官方文档关于大部分问题都有解答,包括数据集格式、数据集的转换,该包有一些一键转换的代码。
如果第一次尝试,这份文档可能不太友好,请先参照其他的博客。
## 数据集准备过程
我采用的是coco数据集,将标签转化为txt后,调整一下位置和配置就可以训练了。
==对于一个全新的模型,如果不知道其数据集的目录结构,可以先训练作者给出的demo,然后类比==
对于yolov8,目录如下:取自官方文档,有如下特点:
1. 存放数据集的根目录datasets与网络模型的目录为同一级
2. coco下目录分为三个文件,我们自己存放的时候也要这样
3. 可以多看一些数据集的yaml文件,能看到大概有两种划分训练集、验证集的方式
1. 第一种是 直接 image下三个文件夹trian、val、test
2. 第二种是图片这种,在coco下存放txt,txt存放图片路径
5. ![[Pasted image 20230912134627.png]]
## 开始训练
训练代码
```python
yolo train data=/root/ultralytics/ultralytics/cfg/datasets/mycoco.yaml model=/root/ultralytics/runs/detect/train22/weights/best.pt epochs=300 imgsz=640 batch=16
```
注意在mycoco.yaml里面写上类别信息(可能有的demo没写,因为pt里面包含了,因此训练自己的就得改),否则报错index 索引越界