神经网络模型部署ubuntu22

训练测试好神经网络后,导出onnx文件,然后就可以部署模型

需要提前了解导出onnx的参数是干嘛的,以及onnx文件的结构/原理

模型部署入门教程(五):ONNX 模型的修改与调试 - 知乎

AI模型部署落地综述(ONNX/NCNN/TensorRT等) - 知乎
TFLite,ONNX,CoreML,TensorRT Export -Ultralytics YOLOv8 Docs

根据部署的平台选择合适的推理加速框架,如果平台是英伟达的显卡,就用TensorRT ,如果是英特尔的CPU或GPU,就用OpenVINO 。当然都可以用ONNX RunTime

OpenVINO

OpenVINO模型部署_哔哩哔哩_bilibili

安装openvino的环境:

看自己选择,推理的时候用Python写还是用C++写

按官网的方式安装OpenVINO

Install Intel® Distribution of OpenVINO™ Toolkit for Linux Using APT Repository — OpenVINO™ documentation

C++ 

环境安装命令:
sudo apt-get install gnupg

wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB

sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB

echo "deb https://apt.repos.intel.com/openvino/2023 ubuntu22 main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2023.list

sudo apt update

apt-cache search openvino

sudo apt install openvino

#搜索看看安装有了没
apt list --installed | grep openvino

/usr/share/openvino/samples/cpp/build_samples.sh

动态库目录在: /usr/lib/openvino-2023.3.0

VScode测试代码


#include <iostream>
#include <openvino/openvino.hpp>
int main(int, char**){
    
    // -------- Get OpenVINO runtime version --------
    std::cout << ov::get_openvino_version().description << ':' << ov::get_openvino_version().buildNumber << std::endl;
    // -------- Step 1. Initialize OpenVINO Runtime Core --------
    ov::Core core;
    // -------- Step 2. Get list of available devices --------
    std::vector<std::string> availableDevices = core.get_available_devices();
    // -------- Step 3. Query and print supported metrics and config keys --------
    std::cout << "Available devices: " << std::endl;
    for (auto&& device : availableDevices) {
        std::cout << device << std::endl;
    }
}

CMakeLists.txt 

cmake_minimum_required(VERSION 3.15)

project(COCO_test)

#openvino
set(LINK_DIR "/usr/lib/openvino-2023.3.0")
# set(OpenVINO_DIR "openvino_2023.3.0/runtime/cmake/")

find_package(OpenVINO REQUIRED)
find_package(OpenCV REQUIRED)

include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${OpenVINO_INCLUDE_DIRS})

link_directories(${LINK_DIR})


add_executable(test main.cpp)

target_link_libraries(test 
                    PRIVATE openvino::runtime
                    ${OpenVINO_LIBRARIES}
                    ${OpenCV_LIBS})

Python

确保你自己创建并激活了 虚拟环境,使用命令完成 OpenVINO™ Runtime 安装

conda update --all
conda install -c conda-forge openvino

TensorRT

yolo系列模型的部署、精度对齐与int8量化加速_哔哩哔哩_bilibili

OpenCV

OpenCV DNN模块推理YOLOv5 ONNX模型方法_yolo5 onnx下载-CSDN博客

C++使用onnxruntime/opencv对onnx模型进行推理(附代码) - 知乎

未完待续......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT小艺

如果文章对你有用,请我喝咖啡吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值