YOLOv8模型改进 第十一讲 添加自适应阈值焦点损失(ATFL)函数解决类别不平衡

本文章已经生成可运行项目,

         本篇文章将介绍一种全新的改进机制——全自适应阈值焦点损失(ATFL)函数,并展示其在YOLOv8中的实际应用。自适应阈值焦点损失(ATFL)是一种动态调整损失权重的损失函数,旨在通过降低易分类样本的影响,增强对难分类样本的关注,从而提升目标检测和分割任务中的模型性能,特别是在类别不平衡的情况下。

 1. 自适应阈值焦点损失ATFL概述      

       自适应阈值焦点损失(Adaptive Threshold Focal Loss,ATFL)是一种用于目标检测和分割任务的损失函数,旨在解决类别不平衡问题并提高模型对难以分类样本的关注。ATFL 的设计灵感源自焦点损失(Focal Loss),后者通过降低易分类样本的损失权重来集中模型的注意力于难以分类的样本上。

ATFL 主要有以下几个特点:

  1. 自适应性:ATFL 根据每个样本的特征和模型的输出自适应地调整损失权重。它能够动态地根据预测结果和真实标签之间的差异,调整阈值,使得模型在训练时更加关注难以分类的样本。

  2. 焦点机制:通过引入焦点机制,ATFL 在处理易分类和难分类样本时,降低了易分类样本的影响力,同时增强了对难分类样本的关注。这种机制有助于提升模型的整体性能,尤其是在类别不平衡的情况下。

  3. 阈值调整:ATFL 引入了自适应阈值,能够针对每个样本计算一个合适的阈值,以决定如何加权损失。这种方式使得损失函数能够更好地反映出样本的重要性。

  4. 增强学习能力:ATFL 通过优化的损失计算方式,使得模型能够更快地学习到有价值的特征,从而提升了训练的效率和效果。

具体实现上,ATFL 通常会包括以下几个步骤:

         1.计算每个样本的预测概率。

        2. 根据预测概率和真实标签计算损失,并根据自适应阈值调整损失权重。

        3. 通过反向传播更新模型参数。

         这种方法特别适用于处理具有高度不平衡的类别数据集,能显著提升模型在困难样本上的表现。对于不同的任务,ATFL 可以根据具体需求进行调整和优化。 

2. 接下来,我们将详细介绍如何将ATFL集成到 YOLOv8 模型中。        

这是我的GitHub代码:tgf123/YOLOv8_improve (github.com)

这是改进讲解:YOLOv8模型改进 第十一讲 添加自适应阈值焦点损失(ATFL)函数解决类别不平衡_哔哩哔哩_bilibili

2.1  如何添加

        1. 首先,在我上传的代码中yolov8_improve中找到ATFL.py代码部分。 

        2. 然后我们在loss.py文件中添加ATFL代码

  

  

本文章已经生成可运行项目
### 实现自适应阈值焦点损失函数 为了实现自适应阈值焦点损失函数 (ATFL),需要理解该损失函数的核心概念及其相对于传统交叉熵损失的优势。ATFL旨在解决类别平衡问题,通过引入一个动态调整的比例因子来减少容易分类样本的影响并集中于难分类样本。 #### 自适应阈值焦点损失函数定义 ATFL基于标准的二元交叉熵损失进行了扩展,在此基础上加入了两个主要组件: - **焦点项**:用于调节同难度级别的样本对总损失贡献的程度。 - **自适应阈值机制**:允许根据预测概率动态设定阈值,从而进一步增强或减弱特定样本的重要性。 具体来说,对于给定的真实标签 \(y\) 和预测的概率分布 \(\hat{p}\)ATFL 可以表示如下[^1]: \[ L_{atfl}(y,\hat{p})=-\alpha(1-\hat{p}_t)^{\gamma}log(\hat{p}_t)\cdot I[\hat{p}_t>\theta]+-(1-\alpha)(\hat{p}_t)^{\gamma}log(1-\hat{p}_t)\cdot I[(1-\hat{p}_t)>\theta] \] 其中, - \(\alpha\)平衡正负类别的加权参数; - \(\gamma\) 控制着焦点效应强度; - \(\theta\) 表示自适应设置的阈值; - \(I[]\) 为指示函数; 当预测得分超过预设阈值时,则认为此样本相对容易被正确分类,并因此受到较小的关注度;反之亦然。 #### PyTorch中的实现方式 下面是在PyTorch框架下实现上述公式的代码片段: ```python import torch import torch.nn as nn class AdaptiveThresholdFocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2., theta=0.75): super().__init__() self.alpha = alpha self.gamma = gamma self.theta = theta def forward(self, inputs, targets): BCE_loss = nn.BCEWithLogitsLoss()(inputs, targets) pt = torch.exp(-BCE_loss) atf_loss_pos = -self.alpha * ((1-pt)**self.gamma) * torch.log(pt) * (pt>self.theta).float() atf_loss_neg = -(1-self.alpha)*(pt**self.gamma)*torch.log(1.-pt)*((1.-pt)>self.theta).float() return (atf_loss_pos + atf_loss_neg).mean() ``` 这段代码实现了带有自适应阈值特性的焦点损失计算逻辑。`forward()` 方法接收输入张量 `inputs` 和目标张量 `targets` 并返回平均后的 ATFL 值作为最终输出。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值