YOLO11改进-mamba-引入mamba_layer 增强局部细节与全局语义的平衡,提高多尺度 小目标检测能力

        在医学图像分割领域,传统的卷积神经网络(CNNs)难以捕捉长距离依赖关系,而基于 Transformer 的模型则面临较高的计算开销。近年来,状态空间模型(SSMs)因其在处理长序列时的高效性而受到关注,例如 Mamba 模型通过选择性机制和硬件优化提升了性能。Vision Mamba(VMamba)作为一种视觉状态空间模型,引入了 Cross Scan Module(CSM),进一步提高了在计算机视觉任务中的适用性。VSS Block 作为 VMamba 的核心模块,旨在通过多方向扫描策略有效提取二维图像的全局和局部特征解决传统模型在长距离依赖建模和计算效率上的不足。

上面是原模型,下面是改进模型

1. 视觉状态空间模块VSS Block介绍 

        VSS Block 基于状态空间模型(SSM)的理论,特别是结构化状态空间序列模型(S4)和 Mamba 的扩展。SSM 通过线性常微分方程(ODE)建模连续时间动态系统,将输入序列映射为输出序列,其离散化形式支持线性递归和全局卷积两种计算方式,确保了线性计算复杂度。VSS Block 在此基础上引入 2D 选择性扫描模块(SS2D),通过多方向扫描(如水平、垂直、对角线)提取图像特征,结合选择性机制动态聚焦关键区域,实现对全局上下文和局部细节的高效建模。

VSS Block 的结构如图 2.c 所示,主要包含以下组件:

线性嵌入层(Initial Linear Embedding)
输入图像首先通过线性变换转换为特征向量 E=Linear(x),作为后续处理的基础。

双分支处理

        主分支:1. 输入至 SS2D 模块进行多方向扫描,提取全局和局部特征,经层归一化(LayerNorm)后得到 S1​=LayerNorm(SS2D(E1​))。

                       2. 特征向量 E 经过 3×3 深度卷积(Depth-wise Conv)和 SiLU 激活函数,生成 E1​=SiLU(Conv3×3​(E))。

        副分支:特征向量 E 直接通过 SiLU 激活函数,生成 S2​=SiLU(E)。

特征融合
        主分支和副分支的输出通过逐元素相乘(Hadamard Product)融合,得到最终的 VSS Block 输出 Y=S1​⊙S2​。该操作结合了 SS2D 提取的结构化特征和原始特征的非线性响应,增强了特征表达的丰富性。

2. YOLOv11与VSS Block的结合           

        将 VSS Block 插入到 YOLO11 的 Backbone 和 Neck 中,可凭借双向状态空间模型与多方向扫描机制,高效捕捉图像全局上下文与局部细节,增强对小目标、复杂背景下物体的特征表达能力;结合线性计算特性与动态注意力机制,在轻量化的同时提升特征融合效率,助力 YOLO11 实现更精准的多尺度目标检测与定位。

3. 空间增强前馈网络VSS Block代码部分

视频讲解:

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve · GitHub

YOLO11改进-Mamba篇 如何使用Manba发一篇三四区论文_哔哩哔哩_bilibili

YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

YOLOv11全部代码,现有一百多种改进机制。

 4. VSS Block引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

                         

第二:在task.py中导入

 ​​​                      

第三:在YOLOv11\ultralytics\nn\tasks.py中的模型配置部分下面代码

   ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​    ​​​​​​​ ​​​​​​​  ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​           

第四:将模型配置文件复制到YOLOV11.YAMY文件中

     ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​            

     第五:运行成功

from sympy import false

from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"E:\Part_time_job_orders\YOLO\YOLOv11\ultralytics\cfg\models\11\yolo11_VMKLA.yamy")\
        .load(r'E:\Part_time_job_orders\YOLO\YOLOv11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'E:\Part_time_job_orders\YOLO\YOLOv11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                          # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                          amp = True
                          )
### 关于 V-MAMBA目标检测使用方法 V-MAMBA 是一种基于深度学习的目标检测框架,通常用于处理复杂的视觉任务。它可能依赖于现有的模型架构(如 YOLO、Faster R-CNN 等),并通过优化实现高性能推理训练。以下是关于如何使用 V-MAMBA 进行目标检测的相关说明: #### 1. 安装环境 为了运行 V-MAMBA,需要配置合适的开发环境。这包括安装必要的库支持工具链。例如,在 C++ 推理环境中可以参考类似的项目设置[^1]。 ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics/examples/YOLOv8-LibTorch-CPP-Inference/ mkdir build && cd build cmake .. make ``` 上述命令展示了如何构建一个支持 LibTorch ONNXRuntime 的 C++ 推理环境。如果 V-MAMBA 支持这些技术栈,则可作为参考。 #### 2. 数据准备 目标检测任务的数据集通常遵循 COCO 或 Pascal VOC 格式。数据标注文件应包含边界框坐标以及类别标签。对于自定义数据集,需将其转换为目标检测算法所接受的标准格式[^2]。 #### 3. 模型加载初始化 假设 V-MAMBA 提供预训练权重或允许导入其他框架的模型(如 PyTorch 或 TensorFlow)。可以通过以下方式加载模型并完成初始化: ```cpp #include <onnxruntime_cxx_api.h> #include <iostream> int main() { Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "V-MAMBA"); Ort::SessionOptions session_options; Ort::Session session(env, "path/to/v-mamba.onnx", session_options); std::vector<const char*> input_names = {"input_tensor"}; std::vector<const char*> output_names = {"output_tensor"}; // 初始化输入张量... } ``` 此代码片段演示了通过 ONNXRuntime 加载模型的过程。具体路径参数取决于实际部署情况。 #### 4. 图像预处理 在执行推断之前,图像需要经过标准化处理以匹配网络输入需求。常见的操作包括调整大小、归一化像素值等。 ```python import cv2 import numpy as np def preprocess_image(image_path, target_size=(640, 640)): image = cv2.imread(image_path) resized = cv2.resize(image, target_size) normalized = (resized / 255.0).astype(np.float32) transposed = np.transpose(normalized, (2, 0, 1)) # HWC -> CHW return transposed[np.newaxis, ...] image_data = preprocess_image("test.jpg") ``` 这段脚本实现了基本的图像预处理逻辑,适用于大多数现代目标检测器。 #### 5. 执行推理 一旦模型被成功加载且输入准备好,即可调用推理函数获取预测结果。 ```cpp Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); std::vector<float> input_tensor_values(input_shape.size(), 0.f); // 填充真实数据... // 创建 Tensor 对象 Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_values.size(), input_node_dims.data(), input_node_dims.size()); // 设置输出容器 std::vector<Ort::Value> output_tensors = session.Run( Ort::RunOptions{nullptr}, input_names.data(), &input_tensor, 1, output_names.data(), 1); // 解析输出... ``` 以上步骤描述了一个完整的推理流程,其中 `session` 表示已加载的模型实例。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值