YOLO双backbone改进 使用MambaOut 主干替换原backbone

         近年来,Mamba 架构凭借状态空间模型(SSM)实现了长序列数据的线性复杂度处理,但其在视觉任务中存在明显局限:SSM 的因果递归机制限制了全局信息整合,且对短序列场景(如常规图像分类、目标检测)存在计算冗余。研究表明,视觉任务(尤其是非自回归的检测任务)更依赖局部特征提取与并行计算能力,而非 Mamba 的长序列建模优势。因此,MambaOut 通过移除 SSM、仅保留门控 CNN 块,构建了更适配视觉任务的轻量化架构,在 ImageNet 分类中已验证其性能超越含 SSM 的视觉 Mamba 模型。

1.MambaOut 原理

MambaOut 的核心理论基于对视觉任务特性的拆解:

        非自回归特性:目标检测需一次性处理整幅图像,无需 Mamba 的因果约束(仅前向信息流动),门控 CNN 的并行计算更贴合任务需求;

        短序列主导:常规检测输入(如 640×640 像素)的 token 长度远小于 SSM 的长序列优势阈值,移除 SSM 可避免无效计算;

        局部特征优先:检测任务对目标边缘、纹理等局部特征敏感度高,门控 CNN 通过动态特征筛选(如 7×7 深度卷积 + 门控机制)强化关键信息提取,抑制背景噪声。

MambaOut 采用分层架构,与 ResNet 类似但模块更轻量:

        基础单元:门控 CNN 块(含深度卷积、门控线性单元 GLU),通过 “卷积特征 × 门控信号” 实现特征自适应筛选;

        层级配置:4 阶段堆叠门控 CNN 块,逐步扩大感受野(如 Small 版本为 3-4-27-3 块数配置),通道数从 96 递增至 576;

        轻量化特性:参数规模较同尺寸 Mamba 模型减少 40%-60%,MACs 降低 30% 以上,适配边缘计算。

2. YOLO与MambaOut 的结合   

       MambaOut 替换 YOLObackbone 可借助其高效长序列建模能力,增强对多尺度目标的上下文关联捕捉,在保持计算效率的同时提升复杂场景下小目标检测精度,且结构更适配并行计算,利于模型轻量化部署。 

3. MambaOut 代码部分

YOLO双backbone讲,使用Mambaout替换YOLO backbone,可用于单模态和双模态检测,提高精度_哔哩哔哩_bilibili

 代码获取:tgf123/YOLOv8_improve

4. MambaOut 双backbone引入到YOLO中

双backbone系列,直接下载运行,避免添加的麻烦。


 

### YOLO 模型中 Backbone 结构的理解 在目标检测框架中,Backbone 负责从输入图像中提取特征。对于采用 Backbone 设计的目标检测模型而言,通常意味着存在两个独立的特征提取路径或者是在不同尺度下并行工作的两条分支。 #### Backbone 的潜在优势 - **多尺度特征融合**:通过引入第二个 Backbone 或者额外的特征提取模块,可以更充分地捕捉到不同层次的空间信息和语义信息。 - **增强鲁棒性**:当面对复杂背景或遮挡情况下的对象时,重特征表示有助于提升系统的稳定性和准确性[^1]。 #### 实现方式 一种可能的方式是基于现有单个 Backbone 进行扩展: ```python class DualBackbone(nn.Module): def __init__(self, backbone_type='efficientrep'): super(DualBackbone, self).__init__() # 初始化第一个backbone用于低级特征提取 self.backbone_low_level = build_backbone(backbone_type) # 初始化第二个backbone用于高级特征提取或其他特定任务 self.backbone_high_level = build_backbone(backbone_type) def forward(self, x): low_features = self.backbone_low_level(x) high_features = self.backbone_high_level(low_features[-1]) # 假设low_features是一个列表 return { 'low': low_features, 'high': high_features } ``` 另一种思路则是借鉴 CSPNet 中的思想,在有基础上增加一条平行支路来进行辅助学习,从而形成所谓的“流”结构[^4]。 #### 应用案例 虽然目前主流版本如 YOLOv5 至 v8 主要集中在单一高效的 Backbone 上做文章,但在某些定制化需求场景里(比如极端条件下的小目标检测),探索 Backbone 架构可能是有意义的方向之一。例如 Gold-YOLO 就尝试了针对小目标检测做出特别调整[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值