回归分析汇总

回归分析是一种预测性的建模技术,它研究的是因变量和自变量之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。

回归分析的作用

  • 找到真正影响因变量的自变量
  • 确定自变量对因变量影响的大小
  • 将回归模型用于预测

评估性能

常采用 M S E MSE MSE M A E MAE MAE以及 R 2 R^2 R2作为评价模型性能的指标

  • 回归平方和(Sum of Squared Regression)
    预测数据与原始数据均值之差的平方和
    S S R = ∑ i = 1 n ( y i ^ − y ˉ ) 2 SSR=\sum_{i=1}^n(\hat{y_i}-\bar{y})^2 SSR=i=1n(yi^yˉ)2

  • 残差平方和(Sum of Squared Errors)
    拟合数据和原始数据对应点的误差的平方和
    S S E = ∑ i = 1 n ( y i − y i ^ ) 2 SSE=\sum_{i=1}^n(y_i-\hat{y_i})^2 SSE=i=1n(yiyi^)2

  • 总偏差平方和(otal sum of squares)
    平均值与真实值的误差,反映与数学期望的偏离程度
    S S T = S S R + S S E = ∑ i = 1 n ( y i − y ˉ ) 2 SST=SSR+SSE=\sum_{i=1}^n(y_i-\bar{y})^2 SST=SSR+SSE=i=1n(yiyˉ)2

  • 决定系数(R-square score)
    R 2 ( y , y ^ ) = 1 − S S R S S T = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2(y,\hat{y})=1-\frac{SSR}{SST}=1-\frac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{\sum_{i=1}^n(y_i-\bar{y})^2} R2(y,y^)=1SSTSSR=1i=1n(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值