第一次在Linux上运行YoloV7(环境安装==图片检测)

本文详细指导如何从GitHub下载Yolov7项目,包括环境配置(如安装Python库和NVIDIACUDA),以及进行单CPU或多CPU训练,使用PyTorch进行模型训练和推理,以及处理COCO数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备

首先第一步下载全部工程代码

GitHub 链接:https://github.com/WongKinYiu/yolov7

  • 下载zip文件然后安装至服务器

(下载方法)

  • 这个方法是设备上安装了git

 命令:git clone 项目.git

(复制这个链接)


通过这个sh脚本获取coco数据集(我用的这里面的数据集,二十几个G)

可以下载coco128只有几兆(用这个的话记得改一下配置文件的代码)

链接:https://ultralytics.com/assets/coco128.zip


环境搭建

 在服务器上创建一个conda虚拟环境,我这里用的是python3.8的版本

指令:

 、、
conda create -n  python==3.8
、、

激活虚拟环境,再进入到yolov7-main文件夹下,运行以下命令查看NVIDIA coda核心的版本,看看符不符合依赖运行

指令:

、、
nucc- V
、、

安装1.12.1版本的PyTorch,连接镜像

ps:yolov7需要这个哦 

指令:

、、
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
、、

按照项目需求去安装对应的Python库,运行需要额外Python库的项目

、、
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
、、

  最后可以运行模型训练的命令,如果没有报错,则说明环境完全搭建好了


模型训练

配置完之后用以下代码进行训练

单CPU训练:

、、
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
、、

多CPU训练:

# train p5 models
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml

# train p6 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml

推理(用的是文件里有的图片)

图片:



python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg

视频(自定义视频):


python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4


运行成功


效果:

 查看结果可以使用

也可以用插件(这个更方便)

### 安装和配置YOLO深度学习模型 #### 环境准备 为了在Linux服务器上顺利安装运行YOLO,需确认已具备必要的基础条件。这包括但不限于拥有SSH客户端(如Xshell)、文件传输工具(如Xftp),以及对服务器有访问权限[^2]。 #### 软件安装环境搭建 1. **Anaconda下载** 使用wget命令获取适用于Linux系统的Anaconda安装脚本,并执行此脚本来完成安装过程。 ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh bash Anaconda3-2023.07-1-Linux-x86_64.sh ``` 2. **配置Conda虚拟环境** 创建一个新的Conda环境专门用于YOLO项目,可以指定Python版本来确保兼容性。 ```bash conda create --name yolov_env python=3.8 conda activate yolov_env ``` 3. **安装PyTorch及其他依赖库** 根据官方文档推荐的方式,在激活后的环境安装PyTorch及相关组件。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install opencv-python matplotlib numpy pandas scikit-image tensorboard tqdm ``` #### YOLO项目的部署 对于特定版本的YOLO(例如YOLOv5或YOLO-NAS),可以从GitHub仓库克隆对应的源码至本地工作区;之后按照官方指南调整参数设置并加载自定义的数据集进行训练前准备工作[^1]。 ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5/ pip install -r requirements.txt ``` 针对YOLOv5的具体实现方式,考虑到其作为单阶段检测器的优势——即能够在一个步骤内直接得出最终的结果,因此特别适合于实时应用场景中的快速响应需求[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值